Math, asked by yatharth5061, 1 year ago

evaluate tan 15. tan 25. tan 60. tan 65. tan 75 - tan 30​

Answers

Answered by utsavmjoshi
37

Answer:

Step-by-step explanation:

tan15 * tan75 * tan65*tan25*tan60 - tan30

= tan15* cot(90-75)*tan25*cot(90-65)*tan60 - tan30

=tan15*cot15*tan25*cot25*tan60-tan30

=1*1*tan60-tan30

= root3 - 1/root3

(3-1)/root3

Answered by rafiaibrahim903
5

Answer:

The required answer is 1.

Step-by-step explanation:

Given: \tan 15^{\circ} \tan 25^{\circ} \tan 60^{\circ} \tan 65^{\circ} \tan 75^{\circ} \\

To find: Evaluate values.

Tangent theta: The side opposite theta divided by the side next to theta is known as the tangent theta. This is theta, then. This length divided by this length, or y over x is the tangent theta. However, because it can only be defined in this way on right triangles, this definition only applies to acute angles, which are angles between 0 and 90 degrees.

We have

\tan 15^{\circ} \tan 25^{\circ} \tan 60^{\circ} \tan 65^{\circ} \tan 75^{\circ} \\

Now calculate value.

=\cot \left(90^{\circ}-15^{\circ}\right) \tan \left(90^{\circ}-25^{\circ}\right) \tan 60^{\circ} \tan 65^{\circ} \tan 75^{\circ}\left[\because \tan \theta=\cot \left(90^{\circ}-\theta\right)\right] \\

Here,

=\cot 75^{\circ} \cot 65^{\circ} \tan 60^{\circ} \tan 65^{\circ} \tan 75^{\circ} \\

{\left[\because \tan \theta=\frac{1}{\cot \theta}\right]} \\

=\frac{1}{\tan 75^{\circ}} \times \frac{1}{\tan 65^{\circ}} \times \tan 60^{\circ} \times \tan 65^{\circ} \times \tan 75^{\circ} \\

=\tan 60^{\circ}\left[\because \tan 60^{\circ}=\sqrt{3}\right] \\

=\sqrt{3}

Now, calculate the value of  \tan 30^{\circ=\frac{1}{\sqrt{3}}

Then, \tan 15^{\circ} \tan 25^{\circ} \tan 60^{\circ} \tan 65^{\circ} \tan 75^{\circ}-\tan 30^{\circ=\sqrt{3}*\frac{1}{\sqrt{3}}=1

Hence, the required answer is 1.

#SPJ3

Similar questions