Math, asked by navya1543, 10 months ago

Evaluate tan 15° + 2 sin 120°:​

Answers

Answered by MaheswariS
1

\textbf{To find:}

\text{The value of}\;tan\,15^{\circ}+2\;sin\,120^{\circ}

\textbf{Solution:}

\bf\,tan\,15^{\circ}

=tan(45^{\circ}-30^{\circ})

=\dfrac{tan\,45^{\circ}-tan\,30^{\circ}}{1+tan\,45^{\circ}\;tan\,30^{\circ}}

=\dfrac{1-\frac{1}{\sqrt3}}{1+(1)\frac{1}{\sqrt3}}

=\dfrac{\frac{\sqrt{3}-1}{\sqrt3}}{\frac{\sqrt{3}+1}{\sqrt3}}

=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}

\implies\boxed{\bf\,tan\,15^{\circ}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}}

\bf\,sin\,120^{\circ}

=sin(90^{\circ}+30^{\circ})

=cos\,30^{\circ}

=\dfrac{\sqrt{3}}{2}

\implies\boxed{\bf\,sin\,120^{\circ}=\dfrac{\sqrt{3}}{2}}

\text{Now,}

tan\,15^{\circ}+2\;sin\,120^{\circ}

=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+2(\dfrac{\sqrt{3}}{2}})

=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+\sqrt{3}

=\dfrac{\sqrt{3}-1+3+\sqrt{3}}{\sqrt{3}+1}

=\dfrac{2\sqrt{3}+2}{\sqrt{3}+1}

=\dfrac{2(\sqrt{3}+1)}{\sqrt{3}+1}

=2

\therefore\textbf{The value of $\bf\,tan\,15^{\circ}+2\;sin\,120^{\circ}$ is 2}

Find more:

1.Solve without using trigonometric tables

(tan 20 / cot 70)+(cot 50 / tan 40 ) +((sin2 20 + sin2 70 )/ sin theta cos (90 - theta ) +cos theta sin (90 - theta)

https://brainly.in/question/8196799

2.Evaluate sin 30 degree by cos 45 degree + cot 45 degree by sec 60 degree minus sin 60 degree by tan 45 degree minus cos 60 degree by sin 90 degree

https://brainly.in/question/11448428

Similar questions