Math, asked by MathHacker001, 6 hours ago

Evaluate :

\begin{gathered} \sf A =  \begin{bmatrix} 2 &  - 3 & 5  \\ 6 & 0 & 4 \\ 1 & 5 &  - 7  \end{bmatrix} \end{gathered}
Also find minor and cofactor elements in the 2nd row of determinant and verify.

 \small\sf{(a) \: -a_{21} .M_{21} + a_{22}.M_{22} - a_{23} .M_{23} = value  \: of \:  A }
 \small\sf{(b) \: a_{21}.C_{21}+ a_{22}.C_{22} + a_{23}.C_{23}= Value of A}
\small\rm{Where \:  M_{21},M_{22},M_{23} \:  are  \: minor  \: of  \: a_{21},a_{22},a_{23} }
\small\rm{And \:  C_{21},C_{22},C_{23} \:  are  \: Cofactor  \: of \:  a_{21},a_{22},a_{23}. }
No spam
Only for best users or moderators.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A =  \: \begin{gathered} \sf  \begin{bmatrix} 2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7 \end{bmatrix} \end{gathered}

Now, The value of matrix A is called | A |

So,

\rm :\longmapsto\: |A|

\rm \:  =  \:2\begin{array}{|cc|}\sf 0 &\sf 4  \\ \sf  5 &\sf  - 7 \\\end{array} + 3\begin{array}{|cc|}\sf 6 &\sf 4  \\ \sf 1 &\sf  - 7 \\\end{array} + 5\begin{array}{|cc|}\sf 6 &\sf 0  \\ \sf 1 &\sf 5 \\\end{array}

\rm \:  =  \:2(0 - 20) + 3( - 42 - 4) + 5(30 - 0)

\rm \:  =  - 40 - 138 + 150

\rm \:  =  \: -  \: 28

\bf\implies \: |A|   \: =  \:  -  \: 28

Now, To verify

\sf{(a) \: -a_{21} .M_{21} + a_{22}.M_{22} - a_{23} .M_{23} = value \: of \: A }

Now,

\red{\rm :\longmapsto\:a_{21} = 6}

\red{\rm :\longmapsto\:a_{22} = 0}

\red{\rm :\longmapsto\:a_{23} = 4}

\red{\rm :\longmapsto\:M_{21} = \begin{array}{|cc|}\sf  - 3 &\sf 5  \\ \sf 5 &\sf  - 7 \\\end{array} = 21 - 25 =  - 4}

\red{\rm :\longmapsto\:M_{22} = \begin{array}{|cc|}\sf 2 &\sf 5  \\ \sf 1 &\sf  - 7 \\\end{array} =  - 14 - 5 =  - 19}

\red{\rm :\longmapsto\:M_{23} = \begin{array}{|cc|}\sf 2 &\sf  - 3  \\ \sf 1 &\sf  5 \\\end{array} = 10 + 3= 13}

So,

\rm :\longmapsto\: -a_{21} .M_{21} + a_{22}.M_{22} - a_{23} .M_{23}

\rm \:  =  \: - 6( - 4) + 0( - 19) - 4(13)

\rm \:  =  \: 24 + 0 - 52

\rm \:  =  \: - 28

\rm \:  =  \: |A|

Hence, Verified

Now, To verify

\sf{(b) \: a_{21}.C_{21}+ a_{22}.C_{22} + a_{23}.C_{23}= Value of A}

We know,

\boxed{  \:  \:  \:  \: \bf \:C_{ij} =  {( - 1)}^{i + j}M_{ij} \:  \:  \:  \: }

Now,

\red{\rm :\longmapsto\:C_{21} = {( - 1)}^{2 + 1}  \begin{array}{|cc|}\sf  - 3 &\sf 5  \\ \sf 5 &\sf  - 7 \\\end{array} =  - (21 - 25) =  4}

\red{\rm :\longmapsto\:C_{22} = {( - 1)}^{2 + 2}  \begin{array}{|cc|}\sf 2 &\sf 5  \\ \sf 1 &\sf  - 7 \\\end{array} =  - 14 - 5 =  - 19}

\red{\rm :\longmapsto\:C_{23} = {( - 1)}^{2 + 3}  \begin{array}{|cc|}\sf 2 &\sf  - 3  \\ \sf 1 &\sf  5 \\\end{array} =  - (10 + 3)=  - 13}

So,

\rm :\longmapsto\: \: a_{21}.C_{21}+ a_{22}.C_{22} + a_{23}.C_{23}

\rm \:  =  \:6(4) - 0(19)  + 4( - 13)

\rm \:  =  \:24 - 0 - 52

\rm \:  =  \: - 28

\rm \:  =  \: |A|

Hence, Verified

Similar questions