Evaluate :-
Answer with proper explanation.
Don't Dare for spam.
→ Expecting answer from :
★ Moderators
★ Brainly stars and teacher
★ Others best users
Answers
On adding eqn (1) and eqn (2) , we have
Answer:
\rm \: \: \: \: \: \dag \: \huge{\underline{\underline{Given:}}}†
Given:
\sf \huge \red{\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1+\sin x \cos x} \: dx}∫
0
2
π
1+sinxcosx
sin
2
x
dx
\huge\colorbox{white}{\colorbox{white}{\colorbox{white}{ Solution }}}
Solution
\begin{gathered} \begin{gathered}\sf Let \: I = \large {\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1+\sin x \cos x} \: dx} \: \: \: \: \: \: \: \: \: \: \: \: \: \longrightarrow(1) \end{gathered} \\ \\ \end{gathered}
LetI=∫
0
2
π
1+sinxcosx
sin
2
x
dx⟶(1)
\begin{gathered} \begin{gathered}\sf \therefore \: \: I = \large {\int_{0}^{\frac{\pi}{2}} \dfrac{\sin ^{2} \bigg( \large\frac{ \pi}{2} - x\bigg) }{1+\sin \bigg ( \frac{\pi}{2 \: } - x \bigg) \cos \bigg( \dfrac{\pi}{2} - x \bigg)} \: dx} \end{gathered} \\ \end{gathered}
∴I=∫
0
2
π
1+sin(
2
π
−x)cos(
2
π
−x)
sin
2
(
2
π
−x)
dx
\begin{gathered}\sf \qquad\bigg[ {\int_{0}^a \sf f(x)\: dx \: = \int_{0}^a } f (a \: - \: x)dx\bigg]\end{gathered}
[∫
0
a
f(x)dx=∫
0
a
f(a−x)dx]
\begin{gathered} \begin{gathered}\sf \therefore \: \: I = \large {\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x \: dx}{1+\cos x \: \sin x} \: dx} \: \: \: \: \: \: \: \: \: \: \: \: \: \longrightarrow(2) \end{gathered} \\ \\ \end{gathered}
∴I=∫
0
2
π
1+cosxsinx
cos
2
xdx
dx⟶(2)
On adding eqn (1) and eqn (2) , we have
\begin{gathered} \begin{gathered}\sf\qquad \: 2 I = \large {\int_{0}^{\frac{\pi}{2}} \frac{(\sin ^{2} x \: + \: cos^{2}x )dx}{1+\sin x \cos x \:} \:} \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered} \\ \\ \end{gathered}
2I=∫
0
2
π
1+sinxcosx
(sin
2
x+cos
2
x)dx
\begin{gathered}\begin{gathered}\sf \qquad = \large {\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+\sin x \cos x} \: } \: \: \: \: \: \: \: \: \: \: \: \: \: \longrightarrow(1) \end{gathered} \\ \\ \end{gathered}
=∫
0
2
π
1+sinxcosx
dx
⟶(1)
\rm \: Divided \: Numerator \: and \: denominator \: by \: cos ^2 x \: ;We \: haveDividedNumeratoranddenominatorbycos
2
x;Wehave
\begin{gathered} \begin{gathered}\sf\qquad \: 2 I = \large {\int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x \: dx}{\sec^{2}x \: + \tan x \:} \:} \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered} \\ \\ \end{gathered}
2I=∫
0
2
π
sec
2
x+tanx
sec
2
xdx
\rm \large \: put \: tan \: x \: = \: t \rightarrow {sec}^{2} \: x \: \: dx = dxputtanx=t→sec
2
xdx=dx
\rm \large \: when \: x \: = \: 0 \: \rightarrow \: t \: = \: 0whenx=0→t=0
\begin{gathered} \sf when \: \: x = \: \frac{ \pi}{2} \: \longrightarrow \: t \: = \infty \end{gathered}
whenx=
2
π
⟶t=∞
\begin{gathered} \begin{gathered}\sf \qquad \therefore \: 2 I = \large {\int_{0}^{ \infty} \frac{dt}{ {t}^{2} \: + \: t \: + 1 \:} \:} \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered} \\ \\ \end{gathered}
∴2I=∫
0
∞
t
2
+t+1
dt
\begin{gathered} \begin{gathered}\sf\qquad \implies \large {\int_{0}^{ \infty} \frac{dt}{ {t}^{2} \: + \: t \: + \frac{1}{4} \: + \: \frac{3}{4} \:} \:} \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered} \\ \\ \end{gathered}
⟹∫
0
∞
t
2
+t+
4
1
+
4
3
dt
\begin{gathered}\begin{gathered}\sf\qquad \implies \large {\int_{0}^{ \infty} \frac{dt}{ \bigg (t \: + \: \frac{1}{2} \bigg)^{2} \: + \bigg( \frac{ \sqrt3}{2} \bigg)^{2} \:} \:} \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered} \\ \\ \end{gathered}
⟹∫
0
∞
(t+
2
1
)
2
+(
2
3
)
2
dt
\begin{gathered}\begin{gathered}\sf\qquad \implies \large \frac{2}{ \sqrt3} \: \bigg[ \bigg( \tan \: \frac{t \: + \: 1}{ \sqrt3} \bigg) \bigg ]_ 0^{\infty} \end{gathered} \\ \\ \end{gathered}
⟹
3
2
[(tan
3
t+1
)]
0
∞
\begin{gathered}\begin{gathered}\sf\qquad \implies \large \frac{1}{ \sqrt3} \: \: \bigg[ \frac{ \pi}{2} \: - \: \frac{ \pi}{ 6} \bigg ] \end{gathered} \\ \\ \end{gathered}
⟹
3
1
[
2
π
−
6
π
]
\begin{gathered}\begin{gathered}\sf\qquad \implies \large \frac{1}{ \sqrt3} \: \: \bigg( \frac{3 \pi \:- \: \pi}{6} \: \: \bigg ) \end{gathered} \\ \\ \end{gathered}
⟹
3
1
(
6
3π−π
)
\begin{gathered}\begin{gathered}\sf\qquad \implies \large \purple{\frac{ \pi}{ 3\sqrt3}} \: \: \end{gathered} \\ \\ \end{gathered}
⟹
3
3
π
\rule{200pt}{2pt}