Math, asked by AdorableMe, 10 months ago

Evaluate \displaystyle{\sf{cosec^2 \frac{\pi }{16}-tan^2\frac{7\pi }{16}.  }}


amitnrw: use Secx = Cosec (pie/2 - x) and sec^2x - tan^2x = 1
amitnrw: or use cosec^2 - cot^2 = 1

Answers

Answered by CunningKing
11

\displaystyle{\sf{cosec^2\frac{\pi }{16}-tan^2\frac{7\pi }{16}  }}\\\\\\\displaystyle{\sf{=cosec^2\frac{\pi }{16}-cot^2\frac{\pi }{16} }}\\\\\\\underline{\boxed{\displaystyle{\sf{=1}}}}

\displaystyle{\textsf{We know that, tan}\sf{\frac{7\pi }{16} =cot\frac{\pi }{16},\ because\ they\ are\ \bold{complementary\ angles.}  }}

\displaystyle{\sf{\frac{\pi }{16}+\frac{7\pi }{16}=\frac{8\pi }{16}  =\frac{\pi }{2}\ which\ when\ converted\ to\ degrees\ becomes\ 90 \°.  }}

Calculation :-

\displaystyle{\sf{Radian=\frac{\pi Degree}{180}   }}\\\\\displaystyle{\sf{\implies D=\frac{180R}{\pi } }}\\\\\displaystyle{\sf{\implies D=\frac{180*\frac{\pi }{2} }{\pi } }}\\\\\displaystyle{\sf{\implies D=\frac{90\pi }{\pi } }}\\\\\displaystyle{\sf{\implies \boxed{D=90\°}}}

Answered by jatt714
2

my hand writting is not good but answer is s correct follow me ok ok

 \mathcal{thanks\: bro} [/tInput:[Tex]\boxed{Box}[/Tex

:\red{Cloud}

Input:[\boxed\boxed\boxed{thanks}\boxed\boxed]

Attachments:
Similar questions