Math, asked by sreyakdkdul, 13 days ago

Evaluate \displaystyle\sf \int\limits_0^2 e^x\:dx as the limit of sums.​

Answers

Answered by SugarBae
8

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\sf \int\limits_0^2  {e}^{x}dx}

Here,

\rm :\longmapsto\:a = 0

\rm :\longmapsto\:b = 2

\rm :\longmapsto\:f(x) =  {e}^{x}

Now,

\red{\rm :\longmapsto\:nh = b - a = 2 - 0 = 2 -  -  - (1)}

Now,

 \green{\rm :\longmapsto\:f(x) =  {e}^{x} }

\green{\rm :\longmapsto\:Put  \:  \: x = a + rh = 0 + rh = rh}

So,

 \green{\rm :\longmapsto\:f(rh) =  {e}^{rh} }

Now, By definition using limit as sum, we have

\purple{\rm :\longmapsto\:\displaystyle\ \int\limits_a^b \: f(x)dx = \displaystyle\lim_{h \to 0}  \sum_{r = 0}^{n - 1} \: f(a + rh)}

On substituting the values, we get

\purple{\rm :\longmapsto\:\displaystyle\ \int\limits_0^2 \:  {e}^{x} dx = \displaystyle\lim_{h \to 0} \:  h \:  \sum_{r = 0}^{n - 1} \:  {e}^{rh} }

\purple{\rm \:  =  \:  \:  \displaystyle\lim_{h \to 0}  \: h(1 +  {e}^{h} +  {e}^{2h}   +  {e}^{3h} +  -  -  -  +  {e}^{(n - 1)h}}

We know,

☆ Sum of n terms of GP series is given by

\boxed{ \rm{ S_n =  \frac{a( {r}^{n} - 1) }{r - 1}}}

where,

a is first term of GP series

r is the common ratio.

So, using this formula, we get

\purple{\rm \:  =  \:  \:  \displaystyle\lim_{h \to 0} \:  h \:  \frac{1( {e}^{nh} - 1)}{ {e}^{h} - 1} }

\purple{\rm \:  =  \:  \:  \displaystyle\lim_{h \to 0} \:  \:  \frac{( {e}^{2} - 1)}{ \dfrac{ {e}^{h} - 1}{h} }}

We know

\boxed{ \rm{ \displaystyle\lim_{h \to 0}  \frac{ {e}^{h} - 1}{h} = 1}}

So, using this we get,

\purple{\rm \:  =  \:    \:  ( {e}^{2} - 1)}

Hence,

\red{\rm :\longmapsto\:\displaystyle\sf \int\limits_0^2  {e}^{x}dx =  {e}^{2}  - 1}

Similar questions