Math, asked by andydamage, 10 months ago

Evaluate :
 {( \frac{1}{4}) }^{ - 2}  + 3 {(8)}^{ \frac{2}{3} }  \times  {4}^{0}  +  {( \frac{9}{16} )}^{ -  \frac{1}{2} }

Answers

Answered by prathibha1126
0

Answer:

hope this helps you easy concepts

Attachments:
Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given that,}

 \sf{  \bigg(\frac { 1} { 4 } \bigg ) ^ {  - 2 } - 3 (  8  ) ^ \frac { 2 }{3}  \times (  {4})^{0}   +  \bigg( \frac {9} { 16 } \bigg ) ^{ -   \frac{1}{2} } } \\

 \sf{  = \bigg(\frac { 4 } { 1 } \bigg ) ^ { 2 } - 3 (  {2}^{3}  ) ^ \frac { 2 }{3}  \times ( 1 ) +  \bigg( \frac { 16} { 9 } \bigg ) ^{  \frac{1}{2} } } \\

 \sf{  =  16 - 3  \times   {2}^{ \cancel3 \times  \frac { 2 }{ \cancel3}} +   \left \{\bigg( \frac { 4} {3} \bigg ) ^{ 2}  \right \} ^{ \frac{1}{2} } } \\

 \sf{  =  16 - 3  \times    {2}^{2}  +  \bigg( \frac { 4} {3} \bigg ) ^{  \cancel2 \times  \frac{1}{ \cancel2} }     } \\

 \sf{  =  16 - 3  \times   4 +  \frac { 4} {3} } \\

 \sf{  =  16 - 12+  \frac { 4} {3} } \\

 \sf{  = 4+  \frac { 4} {3} } \\

 \sf{   =   \frac { 16} {3} } \\

 \sf{   =5   \frac { 1} {3} } \:  \bf{Ans}. \\

Similar questions