Evaluate:
Answers
Answered by
0
Answer:
0
Step-by-step explanation:
+ cos 59°. cosec 31° - cosec² 45°.
+ cos (90°-31°). cosec 31° - cosec² 45°.
+ sin 31°. cosec 31° - cosec² 45°.
or, 1 + 1 - (√2)²
or, 2 - 2 = 0. [Ans]
We have used a basic formula of Trigonometrical identities:
cos(90° - θ) = sin θ.
Also we know the value of cosec 45° = √2.
Answered by
0
Solution :
***********************************
i ) cos80° = cos( 90 - 10 )
= sin 10°
ii ) cos 59 = cos( 90 - 31 )
= sin 31°
iii ) sin31° × cosec 31° = 1
iv ) cosec 45 = √2
*************************************
Now ,
(cos80°/sin10° )+cos59cosec31-cosec²45
= ( sin10/sin10) + sin31cosec31 - ( √2 )²
= 1 + 1 - 2
= 0
•••••
***********************************
i ) cos80° = cos( 90 - 10 )
= sin 10°
ii ) cos 59 = cos( 90 - 31 )
= sin 31°
iii ) sin31° × cosec 31° = 1
iv ) cosec 45 = √2
*************************************
Now ,
(cos80°/sin10° )+cos59cosec31-cosec²45
= ( sin10/sin10) + sin31cosec31 - ( √2 )²
= 1 + 1 - 2
= 0
•••••
Similar questions