Math, asked by Ananya6944, 1 year ago

Evaluate:  \frac{cos80\textdegree}{sin10\textdegree} +cos 59\textdegree . cosec 31\textdegree - cosec^245\textdegree

Answers

Answered by imhkp4u
0

Answer:

0

Step-by-step explanation:

\frac{cos 80°}{sin 10°} + cos 59°. cosec 31° - cosec² 45°.

\frac{cos (90°-10°)}{sin 10°} + cos (90°-31°). cosec 31° - cosec² 45°.

\frac{sin 10°}{sin 10°} + sin 31°. cosec 31° - cosec² 45°.

or, 1 + 1 - (√2)²

or, 2 - 2 = 0. [Ans]

We have used a basic formula of Trigonometrical identities:

cos(90° - θ) = sin θ.

Also we know the value of cosec 45° = √2.

Answered by mysticd
0
Solution :

***********************************
i ) cos80° = cos( 90 - 10 )

= sin 10°

ii ) cos 59 = cos( 90 - 31 )

= sin 31°

iii ) sin31° × cosec 31° = 1

iv ) cosec 45 = √2
*************************************

Now ,

(cos80°/sin10° )+cos59cosec31-cosec²45

= ( sin10/sin10) + sin31cosec31 - ( √2 )²

= 1 + 1 - 2

= 0

•••••

Similar questions