Math, asked by PragyaTbia, 1 year ago

Evaluate : \int\limits^3_{-2} {\frac{1}{x+5}} \, dx

Answers

Answered by hukam0685
0
let us assume that

x + 5 = t \\ \\ dx = dt \\ \\

\int\limits^3_{-2} {\frac{1}{x+5}} \, dx = \int\limits^3_{-2} \: \frac{1}{t} dt \\ \\ as \: \: we \: \: know \: \: that \: \int \: \frac{1}{x} dx = log(x) + c \\ \\ \int\limits^3_{-2} = [log \: t] | - 2 \: to\: 3 \\ \\

redo substitution and apply lower and upper limit

 = log(x + 5) put \: limits \\ \\ = log(2 + 5) - log( - 3 + 5) \\ \\ = log(7) - log(2) \\ \\ <br />\int\limits^3_{-2} {\frac{1}{x+5}} \, dx = log( \frac{7}{2} )
Similar questions