Evaluate:
Answers
Let tan x = t^2
⇒ sec^2 x dx = 2t dt
⇒ dx = [2t / (1 + t^4)]dt
⇒ Integral ∫ 2t^2 / (1 + t^4) dt
⇒ ∫[(t^2 + 1) + (t^2 - 1)] / (1 + t^4) dt
⇒ ∫(t^2 + 1) / (1 + t^4) dt + ∫(t^2 - 1) / (1 + t^4) dt
⇒ ∫(1 + 1/t^2 ) / (t^2 + 1/t^2 ) dt + ∫(1 - 1/t^2) / (t^2 + 1/t^2 ) dt
⇒ ∫(1 + 1/t^2 )dt / [(t - 1/t)^2+ 2] + ∫(1 - 1/t^2)dt / [(t + 1/t)^2 -2]
Let t - 1/t = u
for the first integral ⇒ (1 + 1/t^2 )dt = du
and t + 1/t = v
for the 2nd integral ⇒ (1 - 1/t^2 )dt = dv
Integral = ∫du/(u^2 + 2) + ∫dv/(v^2 - 2)
= (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c
= (1/√2) tan-1 [(t^2 - 1)/t√2] + (1/2√2) log (t^2 + 1 - t√2) / t^2 + 1 + t√2) + c
= (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c
Hope this helps you !
Answer:
∫√(tan x) dx
Let tan x = t^2
⇒ sec^2 x dx = 2t dt
⇒ dx = [2t / (1 + t^4)]dt
⇒ Integral ∫ 2t^2 / (1 + t^4) dt
⇒ ∫[(t^2 + 1) + (t^2 - 1)] / (1 + t^4) dt
⇒ ∫(t^2 + 1) / (1 + t^4) dt + ∫(t^2 - 1) / (1 + t^4) dt
⇒ ∫(1 + 1/t^2 ) / (t^2 + 1/t^2 ) dt + ∫(1 - 1/t^2) / (t^2 + 1/t^2 ) dt
⇒ ∫(1 + 1/t^2 )dt / [(t - 1/t)^2+ 2] + ∫(1 - 1/t^2)dt / [(t + 1/t)^2 -2]
Let t - 1/t = u
for the first integral ⇒ (1 + 1/t^2 )dt = du
and t + 1/t = v
for the 2nd integral ⇒ (1 - 1/t^2 )dt = dv
Integral = ∫du/(u^2 + 2) + ∫dv/(v^2 - 2)
= (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c
= (1/√2) tan-1 [(t^2 - 1)/t√2] + (1/2√2) log (t^2 + 1 - t√2) / t^2 + 1 + t√2) + c
= (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c
Hope this helps you !