Math, asked by Greenland7443, 1 year ago

Evaluate \lim_{n \to \infty} \frac{n^{2} }{(n-7)^{2}-6 }.

Answers

Answered by Swarup1998
18
\underline{\text{Solution :}}

\displaystyle \mathrm{Now,\: \lim_{n \to \infty} \frac{n^{2}}{(n-7)^{2}-6}}

\displaystyle \mathrm{=\lim_{n \to \infty} \frac{n^{2}}{n^{2}-14n+49-6}}

\displaystyle \mathrm{=\lim_{n \to \infty} \frac{n^{2 }}{n^{2}-14n+43}}

\displaystyle\mathrm{=\lim_{n \to \infty} \frac{\frac{n^{2}}{n^{2}}}{\frac{n^{2}}{n^{2}}-\frac{14n}{n^{2}}+\frac{43}{n^{2}}}}

\displaystyle\mathrm{=\lim_{n \to \infty} \frac{1}{1-\frac{14}{n}+\frac{43}{n^{2}}}}

\displaystyle\mathrm{=\frac{1}{\mathrm{1-14\displaystyle \mathrm{\lim_{n \to \infty}\frac{1}{n}}+43\displaystyle \mathrm{\lim_{n \to \infty}\frac{1}{n^{2}}}}}}

\displaystyle\mathrm{=\frac{1}{1-0+0}}

\displaystyle\mathrm{=\frac{1}{1}}

\displaystyle\mathrm{=1}

\to \boxed{\displaystyle\mathrm{\lim_{n \to \infty} \frac{n^{2}}{(n-7)^{2}-6}=1}}

\underline{\text{Rules :}}

\displaystyle\mathrm{1.\:\lim_{n \to \infty} \frac{1}{n}=0}

\displaystyle\mathrm{2.\:\lim_{n \to \infty} \frac{1}{n^{2}}=0}

Swarup1998: :-)
generalRd: NICe
Swarup1998: :-)
AliceJoy: Understood nothing xD not of my level na .... Nice answer ♥️
Swarup1998: :p
Answered by nalinsingh
1

Hey !

Refer the below attachment !

Thanks!

Attachments:
Similar questions