Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{n\to 2}\ \frac{x^{3}+x^{2}+4x+12}{x^{3}-3x+2}

Answers

Answered by mysticd
0
Solution :

______________________

i ) x³+x²+4x+12

= (x-1)(x²+x-2)

= (x-1)(x+1)(x+2) -----( 1 )

ii ) x³-3x+2

= (x+2)(x²-x+6) ------( 2 )

iii ) (x³+x²+4x+12)/(x³-3x+2)

= [(x-1)(x+1)(x+2)]/[(x+2)(x²-x+6)]

After cancellation, we get

=[ (x-1)(x+1)]/(x²-x+6)

= ( x² - 1 )/ ( x² - x + 6 ) ----( 3 )
______________________

Now,

\rm \displaystyle \lim_{x\to 2}\ \frac{x^{3}+x^{2}+4x+12}{x^{3}-3x+2}

= \rm \displaystyle \lim_{x\to 2}\ \frac{x^{2} -1}{x^{2} -x+6}

= \rm \displaystyle \frac{2^{2} - 1}{2^{2} - 2 + 6 }

= \rm \displaystyle \frac{3}{8}

••••
Similar questions
Math, 1 year ago
Math, 1 year ago