Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{n\to \sqrt{3}}\ \frac{x^{2}-3}{x^{2}+3\sqrt{3}x-12}

Answers

Answered by Anonymous
1
heya meta...here is ur answer ✌️☺️

hope it helps u❤️❤️
Attachments:
Answered by mysticd
0
Solution :

i ) x² - 3

= x² - ( √3 )²

= ( x + √3 )( x - √3 ) ----( 1 )

[Since ,( a+b )( a-b ) = a² - b² ]

ii ) x² + 3√3x - 12

Splitting the middle term , we get

= x² + 4√3x - √3x - 4√3 × √3

= x( x + 4√3 ) - √3( x + 4√3 )

= ( x + 4√3 )( x - √3 ) ----( 2 )

Now ,

\rm \displaystyle \lim_{n\to \sqrt{3}}\ \frac{x^{2}-3}{x^{2}+3\sqrt{3}x-12}

= \rm \displaystyle \lim_{n\to \sqrt{3}}\ \frac{(x+\sqrt{3})(x-\sqrt{3})}{(x+4\sqrt{3})(x-\sqrt{3})}

= \rm \displaystyle \lim_{n\to \sqrt{3}}\ \frac{(x+\sqrt{3})}{(x+4\sqrt{3})}

= ( √3 + √3 )/( √3 + 4√3 )

= (2√3)/(5√3)

= 2/5

•••••
Similar questions
Math, 1 year ago
Math, 1 year ago