Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{n\to 1/4}\ \frac{4x-1}{2\sqrt{x}-1}

Answers

Answered by ishanpandey007
0
See the image and ask if there is any problem
Attachments:
Answered by MaheswariS
0

Answer:

\displaystyle\lim_{x\to 1/4} \frac{4x-1}{2\sqrt{x}-1}=2

Step-by-step explanation:

\displaystyle \lim_{x\to 1/4} \frac{4x-1}{2\sqrt{x}-1}

=\displaystyle \lim_{x\to 1/4} \frac{4(x-\frac{1}{4})}{2(\sqrt{x}-\frac{1}{2})}

=\displaystyle \lim_{x\to 1/4} \frac{2(x-\frac{1}{4})}{\sqrt{x}-\sqrt{\frac{1}{4}}}

=\displaystyle \lim_{x\to 1/4}\ \frac{2}{\frac{\sqrt{x}-\sqrt{1/4}}{x-\frac{1}{4}}}

=\displaystyle\frac{\lim_{x\to 1/4}\:2}{\lim_{x\to 1/4}\:\frac{\sqrt{x}-\sqrt{\frac{1}{4}}}{x-\frac{1}{4}}}

=\displaystyle\frac{2}{\lim_{x\to 1/4}\:\frac{\sqrt{x}-\sqrt{\frac{1}{4}}}{x-\frac{1}{4}}}

Using

\boxed{\bf\lim_{x\to\,a}\:\frac{x^n-a^n}{x-a}=na^{n-1}}

=\displaystyle\frac{2}{\frac{1}{2}(\frac{1}{4})^{\frac{1}{2}-1}}

=\displaystyle\frac{2}{\frac{1}{2}(\frac{1}{4})^{\frac{-1}{2}}}

=\displaystyle\frac{2}{\frac{1}{2}(4)^{\frac{1}{2}}}

=\displaystyle\frac{2}{\frac{1}{2}(2)}

=\displaystyle\frac{2}{1}

=2

\implies\boxed{\lim_{x\to 1/4} \frac{4x-1}{2\sqrt{x}-1}=2}

Similar questions
Math, 1 year ago
Math, 1 year ago