Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{n\to \sqrt{3}}\ \frac{x^{4}-9}{x^{2}+4\sqrt{3}x-15}

Answers

Answered by hukam0685
0
We know that , denominator can be factorised as
x^{2}+4\sqrt{3}x-15 \\  \\  = >   {x}^{2}  + 5 \sqrt{3}x -  \sqrt{3}x - 15 \\  \\   =  > x(x + 5 \sqrt{3}) -  \sqrt{3}  (x + 5 \sqrt{3}) \\  \\  =  >  \: (x + 5 \sqrt{3}  )(x -  \sqrt{3}) \\
and numerator can be factorised as

 {x}^{4}  - 9 \\  \\  = ({ {x}^{2} })^{2}  - ( {3)}^{2}  \\  \\  = ( {x}^{2} + 3)( {x}^{2}   - 3) \\  \\  =  ( {x}^{2} + 3)( {x}   -  \sqrt{3} )(x  +  \sqrt{3} ) \\  \\
So

\lim_{n\to \sqrt{3}}\ \frac{x^{4}-9}{x^{2}+4\sqrt{3}x-15} \\  \\  = \lim_{n\to \sqrt{3}}\ \frac{ ( {x}^{2} + 3)( {x}   +  \sqrt{3} )(x -  \sqrt{3} )}{(x + 5 \sqrt{3}  )(x -  \sqrt{3})} \\  \\ =  \lim_{n\to \sqrt{3}}\ \frac{ ( {x}^{2} + 3)( {x}    + \sqrt{3} )}{(x + 5 \sqrt{3}  )} \\ \\ apply \: limit \\  \\  = \frac{ ( ({ \sqrt{3} })^{2} + 3)( { \sqrt{3} }    + \sqrt{3} )}{( \sqrt{3}  + 5 \sqrt{3}  )} \\  \\  =  \frac{6 \times 2 \sqrt{3} }{6 \sqrt{3} }  \\  \\ \lim_{n\to \sqrt{3}}\ \frac{x^{4}-9}{x^{2}+4\sqrt{3}x-15} = 2 \\  \\
Hope it helps you.
Similar questions