Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \bigg(\frac{1-x}{1+x}\bigg)^{\frac{2}{x}}

Answers

Answered by abhi178
2

we have to evaluate,\rm \displaystyle \lim_{x \to 0}\ \bigg(\frac{1-x}{1+x}\bigg)^{\frac{2}{x}}

we know, if we put, x = 0 you will get 1^∞ is the form of limit.

we know, if \displaystyle\lim_{x\to 0}f(x)^{g(x)} is in the form of 1^∞

then, \displaystyle\lim_{x\to 0}f(x)^{g(x)}=\displaystyle\lim_{x\to 0}e^{g(x)[f(x)-1]}

so, \rm \displaystyle \lim_{x \to 0}\ \bigg(\frac{1-x}{1+x}\bigg)^{\frac{2}{x}} = \displaystyle\lim_{x\to 0}e^{\frac{2}{x}\left(\frac{1-x}{1+x}-1\right)}

= e^{\displaystyle\lim_{x\to 0}\frac{2}{x}\times\frac{1-x-1-x}{1+x}}

= e^{\displaystyle\lim_{x\to 0}\frac{2}{x}\times\frac{-2x}{1+x}}

= e^{\displaystyle\lim_{x\to 0}\frac{-4}{1+x}}

= e^-4 = 1/e⁴ [Ans]

Answered by harendrachoubay
1

Answer:

\frac{1}{e^{4} }

Step-by-step explanation:

Given:

\lim_{x \to 0} (\frac{1-x}{1+x} )^{\frac{2}{x} }

Put x=0 in the  above question we get:

\lim_{x \to 0}( \frac{1-0}{1+0}  )^{\frac{2}{0} }

=1^{\infty} Form

Now we are using following  formula:

\lim_{x \to 0} f(x)^{g(x)}

If in the form of 1^{\infty}

Then:

\lim_{x \to 0} e^{g(x)[f(x)-1]}

\lim_{x \to 0} e^{\frac{2}{x}(\frac{1-x}{1+x}-1)  }

e^{ \lim_{x \to 0} \frac{2}{x} (\frac{1-x-1-x}{1+x})  }

e^{ \lim_{x \to 0} \frac{2}{x}( \frac{-2x}{1+x})  }

e^{ \lim_{x \to 0} \frac{-4}{1+x} }

e^{-4}

\frac{1}{e^{4} }

Similar questions
Math, 1 year ago