Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \bigg(1-\frac{3x}{5}\bigg)^{\frac{1}{x}}

Answers

Answered by guptaramanand68
0
Since replacing x with 0 results in 0/0, We use the L'Hopital's rule.

\lim_{ x \to 0}  \bigg( 1 - \frac{3x}{5} \bigg) ^{ \frac{1}{x} }    \\  = e^{\lim_{ x \to 0}  \frac{1}{x}  \text{ ln} \bigg(1 -  \frac{3x}{5} \bigg) } \\  = e^{\lim_{ x \to 0}   \frac{ \frac{d}{dx} \text{ ln} (1 -  \frac{3x}{5} )}{ \frac{d}{dx} x} } \\  = e^{\lim_{ x \to 0} \frac{3}{3x - 5} } \\  = e ^{ -  \frac{ 3}{5} }  \\  =  \frac{1}{ {e}^{ \frac{3}{5} } }
Answered by villageboy
0
❤see in the pic it is been solved
Attachments:
Similar questions
Math, 1 year ago