Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \frac{a^{x}+b^{x}+c^{x}-3}{\tan x}

Answers

Answered by ankit8947
3
hope u like it

plz follow me
Attachments:
Answered by jitumahi89
0

Answer:

\rm \displaystyle \lim_{x \to 0}\ \frac{a^{x}+b^{x}+c^{x}-3}{\tan x} = log(abc)

Step-by-step explanation:

Since we need to evaluate the \rm \displaystyle \lim_{x \to 0}\ \frac{a^{x}+b^{x}+c^{x}-3}{\tan x}

Apply \lim_{x\to0} in given question we get

\frac{a^{0}+b^{0}+c^{0} -3 }{tan0} = \frac{1+1+1-3}{0} = \frac{0}{0}

So , apply L'Hospital rule (Differentiate each term with respect to the variable) we get ,

\rm \displaystyle \lim_{x \to 0}\ \frac{a^{x}loga+b^{x}logb+c^{x}logc}{(secx)^{2} }

Apply limit x tends to 0 we get,

\frac{loga+logb+logc}{1} =log(abc)

So,

\rm \displaystyle \lim_{x \to 0}\ \frac{a^{x}+b^{x}+c^{x}-3}{\tan x} = log(abc)

Similar questions
Math, 1 year ago
Math, 1 year ago