Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{x\to 0}\ \frac{(1+x)^{6}-1}{(1+x)^{2}-1}

Answers

Answered by mysticd
0
Solution :

Given ,

\rm \displaystyle \lim_{x\to 0}\ \frac{(1+x)^{6}-1}{(1+x)^{2}-1}

If x -> 0 then ( x + 1 ) tends to 1

Now ,

= \rm \displaystyle \lim_{(1+x)\to 1}\ \frac{(1+x)^{6}-1}{(1+x)^{2}-1}

**************************************
We know that,

\rm \displaystyle \lim_{x\to a}\ \frac{x^{m}-a^{m}}{x^{n}-a^{n}}

= (m/n) × $a^{(m-n)}$

****************************************

= (6/2) × $1^{(6-2)}$

= 3 × 1

= 3

Therefore ,

\rm \displaystyle \lim_{x\to 0}\ \frac{(1+x)^{6}-1}{(1+x)^{2}-1}

= 3

•••••
Similar questions