Math, asked by PragyaTbia, 1 year ago

If \rm \displaystyle \lim_{x\to a}\ \frac{x^{9}-a^{9}}{x-a}=9, find all possible values of a.

Answers

Answered by mysticd
0
Solution :


\rm \displaystyle \lim_{x\to a}\ \frac{x^{9}-a^{9}}{x-a}=9

************************************
We know that ,

= \rm \displaystyle \lim_{x\to a}\ \frac{x^{n}-a^{n}}{x-a}

= n× $a^{(n-1)}$

***********************************
=>9 × $a^{(9-1)}$ = 9

=> 9$a^{8}$ = 9

=> $a^{8}$ = 9/9

=> $a^{8}$ = 1

=> a = 1

•••••
Similar questions
Math, 1 year ago
Math, 1 year ago