Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x\to 0}\ \frac{2\sin x^{\circ} -\sin 2x^{\circ}}{x^{3}}

Answers

Answered by Anonymous
0
heya meta...here is ur answer ✌️☺️

hope it helps u❤️❤️❤️
Attachments:
Answered by sk940178
0

Answer:

1

Step-by-step explanation:

We have to evaluate,

\lim_{x \to \ 0} \frac{2Sinx-Sin2x}{x^{3} }

=\lim_{x \to \ 0} \frac{2Sinx(1-Cosx)}{x^{3} }

=\lim_{x \to \ 0} \frac{2Sinx.2Sin^{2}(\frac{x}{2} ) }{x^{3} } {Since Cos2x=1-2Sin^{2}x}

=4\lim_{x \to \ 0} \frac{Sinx}{x}. \lim_{x \to \ 0} (\frac{Sin\frac{x}{2} }{\frac{x}{2} } )^{2}.\frac{1}{4} {Here we will use the formula, \lim_{x \to \ 0} \frac{Sinx}{x}=1}

=\frac{4}{4}.1. [ \lim_{\frac{x}{2}  \to \ 0} (\frac{Sin\frac{x}{2} }{\frac{x}{2} } ) ]^{2} {Since x tends to 0, so, \frac{x}{2} also tends to 0}

=1×1×1²

=1 (Answer)

Similar questions
Math, 1 year ago