Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x\to 0}\ \frac{1-\cos 2x}{\sin^{2} 2x}

Answers

Answered by mysticd
2
Solution :

\rm \displaystyle \lim_{x\to 0}\ \frac{1-\cos 2x}{\sin^{2} 2x}

= \rm \displaystyle \lim_{x\to 0}\ \frac{1-(1-2\sin^{2} x)}{4\sin^{2} xcos^{2} x}

= \rm \displaystyle \lim_{x\to 0}\ \frac{2\sin^{2} x}{4\sin^{2} xcos^{2} x}

= \rm \displaystyle \lim_{x\to 0}\ \frac{2}{4cos^{2} x}

= \rm \displaystyle \frac{2}{4cos^{2} 0}

= 2/( 4 × 1 )

= 2/4

= 1/2

••••
Similar questions
Math, 1 year ago