Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to 0}\ \frac{\log(3-x)-\log(3+x)}{x}

Answers

Answered by Anonymous
0
HOPE IT HELPS U ✌️✌️
Attachments:
Answered by shailendrachoubay456
0

Answer:

\rm \displaystyle \lim_{x \to 0}\ \frac{\log(3-x)-\log(3+x)}{x} = \frac{-2}{3}

Step-by-step explanation:

Since we have given \rm \displaystyle \lim_{x \to 0}\ \frac{\log(3-x)-\log(3+x)}{x}

So, apply limit x tends to 0 directly we get,\dfrac{log3-log3}{0}

So,we get  \dfrac{0}{0} form so, apply l'hospital rule i.e. differentiated each function with respect to its variable we get.

\dfrac{\frac{-1}{3-x}-\frac{1}{3+x}}{1}

Now apply limit , we get,

\dfrac{\dfrac{-1}{3}-\dfrac{1}{3}}{1} = \dfrac{-2}{3}

\rm \displaystyle \lim_{x \to 0}\ \frac{\log(3-x)-\log(3+x)}{x} = \frac{-2}{3}

Similar questions
Math, 1 year ago