Math, asked by PragyaTbia, 1 year ago

Evaluate
\rm \displaystyle \lim_{x\to 0}\ \frac{\sqrt{a+x}-\sqrt{a}}{x\sqrt{a(a+x)}}

Answers

Answered by hukam0685
1
To solve the given limit,rationalise the numerator

\lim_{x\to 0}\ \frac{\sqrt{a+x}-\sqrt{a}}{x\sqrt{a(a+x)}} \times  \frac{ \sqrt{a + x} +  \sqrt{a}  }{ \sqrt{a + x} +  \sqrt{a}  }  \\  \\ \lim_{x\to 0}\ \frac{a + x - a}{x\sqrt{a(a+x)}} \times  \frac{1}{ \sqrt{a + x} +  \sqrt{a}  }  \\  \\ \lim_{x\to 0}\ \frac{ x }{x\sqrt{a(a+x)}} \times  \frac{1}{ \sqrt{a + x} +  \sqrt{a}  } \\  \\ \lim_{x\to 0}\ \frac{ 1 }{\sqrt{a(a+x)}} \times  \frac{1}{ \sqrt{a + x} +  \sqrt{a}  } \\ \\ apply \: limit \\  \\  =  \frac{ 1 }{\sqrt{a(a+0)}} \times  \frac{1}{ \sqrt{a + 0} +  \sqrt{a}  } \\  \\  = \frac{ 1 }{\sqrt{ {a}^{2} }} \times  \frac{1}{ \sqrt{a } +  \sqrt{a}  } \\  \\ \lim_{x\to 0}\ \frac{\sqrt{a+x}-\sqrt{a}}{x\sqrt{a(a+x)}} =  \frac{1}{2a \sqrt{a} }  \\  \\
Hope it helps you.
Similar questions
Math, 1 year ago