Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x\to \pi/2}\ \frac{3\cos x+\cos 3x}{(2x-\pi)^{3}}

Answers

Answered by Anonymous
0
Hope it helppsss uhhhg
Attachments:
Answered by abhi178
0

we have to evaluate, \rm \displaystyle \lim_{x\to \pi/2}\ \frac{3\cos x+\cos 3x}{(2x-\pi)^{3}}

substitute , x = h + π/2

so, \rm \displaystyle \lim_{h+\frac{\pi}{2}\to \pi/2}\ \frac{3\cos (h+\pi/2)+\cos 3(h+\pi/2)}{\{2(h+\pi/2)-\pi\}^{3}}

= \displaystyle\lim_{h\to 0}\frac{-3sin(h)+sin(3h)}{(2h)^3}

we know, sin3Φ = 3sinΦ - 4sin³Φ

so, sin(3h) = 3sin(h) - 4sin³(h)

so, \displaystyle\lim_{x\to 0}\frac{-3sin(h)+3sin(h)-4sin^3(h)}{8h^3}

= \frac{-1}{2}\displaystyle\lim_{x\to 0}\left(\frac{sin(h)}{h}\right)^3

we know, \\displaystyle\lim_{h\to 0}\frac{sinh}{h}=1

= -1/2 × 1 = -1/2 [ Ans]

Similar questions
Math, 1 year ago
Math, 1 year ago