Math, asked by madhav5245, 8 days ago

Evaluate

 \sqrt{7 - 24i}

Please don't spam​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: \sqrt{7 - 24i}

Let assume that

\rm :\longmapsto\: \sqrt{7 - 24i} = x + iy -  -  -  - (1)

On squaring both sides, we get

\rm :\longmapsto\:7 - 24i =  {(x + iy)}^{2}

\rm :\longmapsto\:7 - 24i =  {x}^{2} +  {i}^{2} {y}^{2} + 2xyi

\rm :\longmapsto\:7 - 24i =  {x}^{2}  - {y}^{2} + 2xyi \:  \:  \:  \:  \:  \:  \:  \{ \because {i}^{2}  =  - 1 \}

So, on comparing real and Imaginary parts, we get

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2}  -  {y}^{2}  = 7 \: }}} -  -  -  - (2)

and

\red{\rm :\longmapsto\:\boxed{ \tt{ \: 2xy =  - 24 \: }}} -  -  -  - (3)

Now, we know that,

\red{\rm :\longmapsto\: {x}^{2} +  {y}^{2}  =  \sqrt{ {( {x}^{2}  -  {y}^{2}) }^{2}  + 4 {x}^{2}  {y}^{2} } }

can be further rewritten as

\red{\rm :\longmapsto\: {x}^{2} +  {y}^{2}  =  \sqrt{ {( {x}^{2}  -  {y}^{2}) }^{2}  +  {(2xy)}^{2}}}

On substituting the values from equation (2) and (3), we get

\rm :\longmapsto\: {x}^{2}+{y}^{2} =  \sqrt{ {( - 7)}^{2}  +  {(24)}^{2} }

\rm :\longmapsto\: {x}^{2}+{y}^{2} =  \sqrt{ 49 + 576}

\rm :\longmapsto\: {x}^{2}+{y}^{2} =  \sqrt{ 625}

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2} + {y}^{2}  = 25 \: }}} -  -  -  - (4)

On adding equation (2) and (4) we get

\rm :\longmapsto\: {2x}^{2} = 32

\rm :\longmapsto\: {x}^{2} = 16

\rm \implies\:\boxed{ \tt{ \: x \:  =  \:  \pm \: 4 \: }} -  -  -  - (5)

On Subtracting equation (2) from equation (4), we get

\rm :\longmapsto\: {2y}^{2} = 18

\rm :\longmapsto\: {y}^{2} = 9

\rm \implies\:\boxed{ \tt{ \: y \:  =  \:  \pm \: 3 \: }} -  -  -  - (6)

As from equation (3), we have

\red{\rm :\longmapsto\:xy < 0 \: }

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 4 & \sf  - 3 \\ \\ \sf  - 4 & \sf 3 \end{array}} \\ \end{gathered}

Hence,

 \purple{\bf :\longmapsto\: \sqrt{7 - 24i} =  - 4 + 3i \:  \: or \:  \: 4 - 3i}

Answered by nagrenikita769
9

Calculation :

Let, 7 - 24 i = a + bi where a,b R

Squaring on both sides we get,

7 + 24 i = (a + bi )²

7 + 24i = + i² + 2abi

7 + 24i = ( - ) + 2abi. ( i² = -1 )

Equating real and imaginary parts we get,

 {a}^{2}  -  {b}^{2}  = 7 \:  \: and \:  \: 2ab = 24 \\  {a}^{2}  -  {b}^{2}  = 7 \: and \:  \: b =  \frac{12}{a}  \\  {a}^{2}  - ( \frac{12}{a} ) {}^{2}  = 7 \\  {a}^{2}  -  \frac{144}{ {a}^{2} }  = 7 \\  {a}^{4}  - 144 - 7 {a}^{2}

a⁴ - 7a² - 144 = 0

( - 16 ) ( + 9 ) = 0

= 16. or = -9

But a R

-9

therefore, = 16

a = +4 or -4

when \: a = 4 \:  \:  \: b =  \frac{12}{4} = 3 \\ when \: a =  - 4 \:  \:  \: b =  \frac{12}{ - 4}   =  - 3 \\

therefore, 7+ 24i = +( 4 + 3i ) or - ( 4 + 3i )

Similar questions