Math, asked by MysteriesGirl, 10 days ago


Evaluate
\\ \tt \color{blu} \boxed{ {{\tt\int \frac{3 x^{2}}{\sqrt{9-x^{6}}} d x}}}

Do Not Spam..

Answers

Answered by NITESH761
28

Answer:

\rm (-1)·\bigg(atan \bigg(\dfrac{\sqrt{-x^6+9}}{x^3} \bigg)\bigg)+C

Step-by-step explanation:

  {{ \displaystyle \:  \rm \: \int \frac{3 x^{2}}{\sqrt{9-x^{6}}} d x}}

3\displaystyle \:  \rm \: \int \frac{ x^{2}}{\sqrt{-x^{6} + 9}} dx

\rm let \: -1+\dfrac{9}{x^6}=u^2

\rm  \dfrac{d}{dx} \bigg(-1+\dfrac{9}{x^6}\bigg)=\dfrac{d}{du}(u^2)

\rm  -\dfrac{54dx}{x^7}=2udu

\displaystyle \:  \rm \: \int \frac{ x^{2}}{\sqrt{-x^{6} + 9}} dx = \displaystyle \rm \int -\dfrac{1}{3u^2+3}du

3 \displaystyle \rm \int -\dfrac{1}{3u^2+3}du

-3 \displaystyle \rm \int \dfrac{1}{3u^2+3}du

\rm let \: u = tan(v)

\rm  \dfrac{d}{du} u = \dfrac{d}{dv}tan(v)

\rm du = (1+ tan(v)^2)dv

\displaystyle \rm \int \dfrac{1}{3u^2+3}du = \displaystyle \rm \int \dfrac{1}{3} dv

-3 \displaystyle \rm \int \dfrac{1}{3} dv

\displaystyle \rm \int \dfrac{1}{3} dv = \dfrac{v}{3}= -v

\rm (-1)·(atan(u))

\rm (-1)·\bigg(atan \bigg(\dfrac{\sqrt{-x^6+9}}{x^3} \bigg)\bigg)

\rm (-1)·\bigg(atan \bigg(\dfrac{\sqrt{-x^6+9}}{x^3} \bigg)\bigg)+C

Answered by mathdude500
38

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm \frac{3 x^{2}}{\sqrt{9-x^{6}}} d x \\

can be rewritten as

\rm \: =  \:  \displaystyle\int\rm \frac{3 x^{2}}{\sqrt{9- {( {x}^{3}) }^{2} }} d x \\

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \:  {x}^{3} = y \\

\rm\implies \: {3x}^{2} \: dx \:  =  \: dy \:  \\

So, on substituting these values in above integral, we get

\rm \: =  \: \displaystyle\int\rm  \frac{dy}{ \sqrt{9 -  {y}^{2} } }  \\

can be further rewritten as

\rm \: =  \: \displaystyle\int\rm  \frac{dy}{ \sqrt{ {3}^{2}  -  {y}^{2} } }  \\

We know,

\boxed{\sf{  \: \: \displaystyle\int\rm  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  \:  =  \:  {sin}^{ - 1} \frac{x}{a} \:  +  \: c \: }} \\

So, using this result, we get

\rm \: =  \:  {sin}^{ - 1}\dfrac{y}{3} + c \:  \\

\rm \: =  \:  {sin}^{ - 1}\dfrac{ {x}^{3} }{3} + c \:  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \displaystyle\int\rm \frac{3 x^{2}}{\sqrt{9-x^{6}}} d x=  \:  {sin}^{ - 1}\dfrac{ {x}^{3} }{3} + c \:  }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions