Math, asked by yadavankita, 2 months ago

Evaluate the following:​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \int \frac{dx}{7 + 2 {x}^{2} }  \\

let \:  \: x =   \sqrt{\frac{7}{2} }  \tan(y)  \\  \implies \: dx =  \sqrt{ \frac{7}{2} }  \sec^{2} (y) dy

 \int \frac{ \sqrt{ \frac{7}{2} }  \sec^{2} (y) dy}{7 + 2 . \frac{7}{2} { \tan}^{2} (y)}  \\

  =   \frac{1}{ \sqrt{14} } \int \frac{ \sec^{2} (y)dy }{ \sec^{2} (y) }  \\

  =   \frac{1}{ \sqrt{14} } .y + c  \\

  =   \frac{1}{ \sqrt{14} } . \tan^{-1}(  \sqrt{ \frac{2}{7} } x ) + c  \\

Similar questions