Math, asked by PaarthVeer, 18 days ago

Evaluate the following :​

Attachments:

Answers

Answered by mathdude500
4

Question :- Evaluate the following :

\rm \: \displaystyle\int_{-8}^{8}\rm  \frac{ {x}^{3} }{9 -  {x}^{2} }  \: dx \\

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_{-8}^{8}\rm  \frac{ {x}^{3} }{9 -  {x}^{2} }  \: dx \\

We know,

\boxed{ \rm{ \:\begin{gathered}\begin{gathered}\displaystyle\int_{-a}^{a}\rm f(x)dx = \begin{cases} &\sf{0 \:  \: if \: f( - x) =  - f(x)} \\ \\  &\sf{2\displaystyle\int_{0}^{a}\rm f(x)dx \:  \: if \: f( - x) = f(x)} \end{cases}\end{gathered}\end{gathered}}}

So, Consider

\rm \: f(x) = \dfrac{ {x}^{3} }{9 -  {x}^{2} }  \\

So,

\rm \: f( - x) = \dfrac{ {( - x)}^{3} }{9 -  {( - x)}^{2} }  \\

\rm \: f( - x) = \dfrac{ -  {x}^{3} }{9 -   {x}^{2} }  \\

\rm \: f( - x) \:  =  \: -  \:  \dfrac{{x}^{3} }{9 -   {x}^{2} }  \\

\rm\implies \:f( - x) \:  =  \:  -  \: f(x) \\

Hence, using above property of definite integrals, we have

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\int_{-8}^{8}\rm  \frac{ {x}^{3} }{9 -  {x}^{2} }  \: dx = 0 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}\rm f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b}\rm f(y) \: dy \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}\rm f(x) \: dx \:  =  \: -  \:  \displaystyle\int_{b}^{a}\rm f(x) \: dx \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{a}\rm f(x) \: dx \:  =  \: \displaystyle\int_{0}^{a}\rm f(a - x) \: dx \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}\rm f(x) \: dx \:  =  \: \displaystyle\int_{a}^{b}\rm f(a  + b- x) \: dx \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}\rm f(x) \: dx \:  = 2 \: \displaystyle\int_{0}^{a}\rm f(x) \: dx \: if \: f(2a - x) = f(x) \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}\rm f(x) \: dx \:  = 0 \: if \: f(2a - x) = -  f(x) \: }} \\

Answered by kvalli8519
1

refer the given attachment

Attachments:
Similar questions