Math, asked by ayush7250166742, 10 months ago

Evaluate the following
Cos²45 - Sin0-sin30+2sin45-sin90​

Answers

Answered by Anonymous
19

 \bf{cos ^{2}45 ^ {\circ} - sin0 ^{ \circ} - sin30^{ \circ}  + 2sin45 ^{ \circ} - sin90^{ \circ}    }

  • cos 45° = 1/√2
  • sin 0° = 0
  • sin 30° = 1/2
  • sin 45° = 1/√(2
  • sin 90° = 1

  \longrightarrow \:  \sf{  \bigg(\dfrac{1}{ \sqrt{2} } \bigg)^{2} - 0 -  \dfrac{1}{2}  + \bigg( 2 \times  \dfrac{1}{ \sqrt{2} } \bigg)  - 1  } \\  \\  \longrightarrow \:  \sf{ \dfrac{1}{2 }  -  \dfrac{1}{2} +  \dfrac{2}{ \sqrt{2} }  - 1 } \\  \\  \longrightarrow \:  \sf{ \cancel{ \frac{1}{2}  } -  \cancel{ \frac{1}{2} } +  \frac{ \cancel{ \: 2}}{ \cancel{ \sqrt{2} }}  - 1} \\  \\  \longrightarrow \:  \sf{ \sqrt{2} - 1 } \\  \\  \longrightarrow \:  \sf{1.41 - 1} \\  \\  \longrightarrow \:  \boxed{ \bf{0.41}}

Cos²45° - Sin0° - sin30° + 2sin45° - sin90° = 0.41

Answered by Anonymous
6

Given:-

The equation is

Cos²45 - Sin0 - sin30 + 2sin45 - sin90

To solve:-

Evaluate the given equation

Concept used:-

● Cos 45° = 1 / √2

● Sin 0° = 0

● Sin 30° = 1 / 2

● Sin 45° = 1 / √2

● Sin 90° = 1

Solution :-

⇒( \frac{1}{ \sqrt{2} })^{2}  - 0 -  \frac{1}{2} (2 \times  \frac{1}{ \sqrt{2} }  - 1) \\ ⇒ \frac{1}{2}  -  \frac{1}{2}  +  \frac{2}{ \sqrt{2} }  - 1 \\ ⇒ \frac{1}{2}  -  \frac{1}{2}  +  \frac{2}{ \sqrt{2} }  - 1 \\

Cutting the equation , we get,

 \sqrt{2}  - 1 \\  = 1.41 - 1 \\  = 0.41

Final result :-

Cos²45 - Sin0 - sin30 + 2sin45 - sin90 = 0.41

Similar questions