Math, asked by talpadadilip417, 1 day ago

Evaluate The Following Definite Integrals As Limit Of Sums:-
  \orange{\boxed{ \boxed{ \displaystyle \tt \pink{ \leadsto\int_{1}^{4}\left(3 x^{2}+2 x+5\right) d x}}}}
Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int_1^4\rm ( {3x}^{2} + 2x + 5) \: dx \\

So, Here

Lower limit, a = 1

Upper limit, b = 4

\rm \: f(x) =  {3x}^{2} + 2x + 5 \\

Step :- 1

\rm \: nh = b - a = 4 - 1 = 3 \\

Step :- 2

\rm \: f(x) =  {3x}^{2} + 2x + 5 \\

Put x = a + rh = 1 + rh

So, on substituting the values, we get

\rm \: f(1 + rh) =  {3(1 + rh)}^{2} + 2(1 + rh) + 5 \\

\rm \:  =  \: 3(1 +  {r}^{2} {h}^{2} + 2rh) + 2(1 + rh) + 5 \\

\rm \:  =  \: 3 +  3{r}^{2} {h}^{2} + 6rh + 2 + 2rh + 5 \\

\rm \:  =  \:3{r}^{2} {h}^{2} + 8rh + 10 \\

Step :- 3

By definition of Limit as a Sum,

\begin{gathered}\rm \: \displaystyle\int_a^b \: f(x) \: dx \: = \lim _{h \to \: 0}\bigg(h \sum_{r = 0}^{n - 1} f(a + rh)\bigg) \\ \end{gathered}

So, on substituting the values, we get

\begin{gathered}\rm \: \displaystyle\int_1^4 ( {3x}^{2} + 2x + 5)  \: dx \: = \lim _{h \to \: 0}\bigg(h \sum_{r = 0}^{n - 1} f(1 + rh)\bigg) \\ \end{gathered}

\rm \:  = \lim _{h \to \: 0}\bigg(h \sum_{r = 0}^{n - 1} (3 {r}^{2} {h}^{2} + 8rh + 10)  \bigg) \\

\rm \:  = \lim _{h \to \: 0}\bigg(3 {h}^{3}  \sum_{r = 0}^{n - 1} {r}^{2} + 8{h}^{2}\sum_{r = 0}^{n - 1}r  + 10h\sum_{r = 0}^{n - 1}1  \bigg) \\

\rm \:  = \lim _{h \to \: 0}\bigg(3 {h}^{3} \frac{n(n - 1)(2n - 1)}{6} + 8 {h}^{2} \frac{n(n - 1)}{2} + 10nh \bigg) \\

\rm \:  = \lim _{h \to \: 0}\bigg( \frac{nh(nh - h)(2nh - h)}{2} + 4 nh(nh - h) + 10nh \bigg) \\

\rm \:  = \dfrac{3(3 - 0)(6 - 0)}{2}   + 4(3)(3) + 10(3)\\

\rm \:  =  \: 27 + 36 + 30

\rm \:  =  \: 93 \\

Hence,

\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\int_1^4\rm ( {3x}^{2} + 2x + 5) \: dx = 93 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used

\boxed{\tt{ \sum_{r = 0}^{n - 1}1 \:  =  \: n \: }} \\

\boxed{\tt{ \sum_{r = 0}^{n - 1}r \:  =  \:  \frac{n(n - 1)}{2}  \: }} \\

\boxed{\tt{ \sum_{r = 0}^{n - 1} {r}^{2}  \:  =  \:  \frac{n(n - 1)(2n - 1)}{6}  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by MathTeacher029
1

this is the answer

I am not a moderator but I am a best users

Attachments:
Similar questions