Evaluate the following : (i) sin 60° cos 30° + sin 30° cos 60° (ii) 2 tan245° + cos230° – sin260° (iii) cos 45°/(sec 30° + cosec 30°) (iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°) (v) (5cos260° + 4sec230° - tan245°)/(sin230° + cos230°)
Answers
Answered by
7
SOLUTION
(i) sin 60° cos 30° + sin 30° cos 60° = (√3/2×√3/2) + (1/2×1/2) = 3/4 + 1/4 = 4/4 = 1 (ii) 2 tan245° + cos230° – sin260° = 2×(1)2 + (√3/2)2 - (√3/2)2 = 2 (iii) cos 45°/(sec 30° + cosec 30°) = 1/√2/(2/√3 + 2) = 1/√2/{(2+2√3)/√3) = √3/√2×(2+2√3) = √3/(2√2+2√6) = √3(2√6-2√2)/(2√6+2√2)(2√6-2√2) = 2√3(√6-√2)/(2√6)2-(2√2)2 = 2√3(√6-√2)/(24-8) = 2√3(√6-√2)/16 = √3(√6-√2)/8 = (√18-√6)/8 = (3√2-√6)/8 (iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°) = (1/2+1-2/√3)/(2/√3+1/2+1) = (3/2-2/√3)/(3/2+2/√3) = (3√3-4/2√3)/(3√3+4/2√3) = (3√3-4)/(3√3+4) = (3√3-4)(3√3-4)/(3√3+4)(3√3-4) = (3√3-4)2/(3√3)2-(4)2 = (27+16-24√3)/(27-16) = (43-24√3)/11] (v) (5cos260° + 4sec230° - tan245°)/(sin230° + cos230°) = 5(1/2)2+4(2/√3)2-12/(1/2)2+(√3/2)2 = (5/4+16/3-1)/(1/4+3/4) = (15+64-12)/12/(4/4) = 67/12
(i) sin 60° cos 30° + sin 30° cos 60° = (√3/2×√3/2) + (1/2×1/2) = 3/4 + 1/4 = 4/4 = 1 (ii) 2 tan245° + cos230° – sin260° = 2×(1)2 + (√3/2)2 - (√3/2)2 = 2 (iii) cos 45°/(sec 30° + cosec 30°) = 1/√2/(2/√3 + 2) = 1/√2/{(2+2√3)/√3) = √3/√2×(2+2√3) = √3/(2√2+2√6) = √3(2√6-2√2)/(2√6+2√2)(2√6-2√2) = 2√3(√6-√2)/(2√6)2-(2√2)2 = 2√3(√6-√2)/(24-8) = 2√3(√6-√2)/16 = √3(√6-√2)/8 = (√18-√6)/8 = (3√2-√6)/8 (iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°) = (1/2+1-2/√3)/(2/√3+1/2+1) = (3/2-2/√3)/(3/2+2/√3) = (3√3-4/2√3)/(3√3+4/2√3) = (3√3-4)/(3√3+4) = (3√3-4)(3√3-4)/(3√3+4)(3√3-4) = (3√3-4)2/(3√3)2-(4)2 = (27+16-24√3)/(27-16) = (43-24√3)/11] (v) (5cos260° + 4sec230° - tan245°)/(sin230° + cos230°) = 5(1/2)2+4(2/√3)2-12/(1/2)2+(√3/2)2 = (5/4+16/3-1)/(1/4+3/4) = (15+64-12)/12/(4/4) = 67/12
Similar questions