Math, asked by tehrimamjad02, 9 months ago

evaluate the following integers ​

Attachments:

Answers

Answered by tushar1224
2

REFER TO THE ATTACHMENT FOR THE ANSWER

Attachments:
Answered by kaushik05
89

Solution:

18)

 \int \:  {tan}^{ - 1}(  \sqrt{x} )dx \\

Here , we use the formula of integration by parts :

  \boxed{\int uv \: dx = u \int \: v \: dx -  \int \: ( \frac{du}{dx}  \int \: v \: dx) \: dx }\\

Here , we let the other function as unity which taken as 2nd function :

 \int \:  {tan}^{ - 1} ( \sqrt{x} ).(1)dx \\   \\  \implies  {tan}^{ - 1} ( \sqrt{x} ) \int \: 1 \: dx -  \int( \frac{d}{dx} ( {tan}^{ -1 } ( \sqrt{x} ) \int \: 1 \: dx)dx \\  \\  \implies \:  {tan}^{ - 1} ( \sqrt{x} )(x) -  \int \: ( \frac{1}{1 +  {( \sqrt{x} )}^{2} } (x))dx \ \\  \\  \implies \:  x \: {tan}^{ - 1} ( \sqrt{x} ) -  \int \:  \frac{x}{1 + x} dx \\  \\   \implies \:  \: x \:   {tan}^{ - 1}  (\sqrt{x} ) -  \int\: (1 -  \frac{1}{x + 1} )dx \\  \\  \implies \: x \:  {tan}^{ - 1} ( \sqrt{x} ) - x +  log(x + 1)  + c

19) Solution refer to the attachment.

Attachments:
Similar questions