Math, asked by siyonaj7, 2 months ago

Evaluate the following limit.​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \lim_{x \rarr1}  \frac{ {x}^{x}  - x}{1 - x +  log(x) }  \\

Since, it is 0/0 form so using l'hospital rule

  = \lim_{x \rarr1}  \frac{ {x}^{x} ( log(x)   - 1)- 1}{ - 1 +   \frac{1}{x}  }  \\

  = \lim_{x \rarr1}  \frac{ {x}^{x} ( log(x)   - 1)^{2} +  {x}^{x} . \frac{1}{x}   }{  -  \frac{1}{x^{2} }  }  \\

  =   \frac{ 1(0   - 1)^{2} + 1  }{  -  1 }  \\

  = - 2

Similar questions