Math, asked by Anonymous, 3 months ago

evaluate the following limits :

 \sf{ lim_{x \to1}} \frac{(2x - 3)(\sqrt{x} - 1)}{ {3x}^{2}  + 3x - 6}  \\  \\

Answers

Answered by Anonymous
1

Answer:

This implies that

x2+2ax=4x−4a−13

or

x2+2ax−4x+4a+13=0

or

x2+(2a−4)x+(4a+13)=0

Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.

Hence we get that

(2a−4)2=4⋅1⋅(4a+13)

or

4a2−16a+16=16a+52

or

4a2−32a−36=0

or

a2−8a−9=0

or

(a−9)(a+1)=0

So the values of a are −1 and 9.

Answered by SweetLily
15

Answer:

\sf{ lim_{x \to1}} \frac{(2x - 3)(\sqrt{x} - 1)}{ {3x}^{2} + 3x - 6} \\ \\ \sf \color{red}{ factorize \: the \: denominator \: by \: middle \: term \: splitting}\\  \\    : \implies \sf{lim_{x \to \: 1} \frac{(2x - 3)( \sqrt{x} - 1) }{3 {x}^{2}  - 3x + 6x - 6} } \\  \\  \sf{  : \implies lim_{x \to \: 1} =  \frac{(2x - 3)( \sqrt{x} - 1) }{3x(x - 1) + 6(x - 1)} }</p><p> \\  \\  \sf{ :  \implies lim_{x \to \: 1} \frac{(2x - 3)( \sqrt{x}  - 1)}{(3x + 6) (x - 1)}  } \\  \\  \sf{ :  \to \color{green}\:( x - 1) =  (\sqrt{x}  - 1)( \sqrt{x}  + 1)} \\  \\  \sf{ :  \implies \: lim_{x \to \: 1} \frac{(2x - 3)( \sqrt{x}  - 1)}{(3x + 6)( \sqrt{x}  - 1)( \sqrt{x}  + 1)} } \\  \\  \sf{ : \implies lim_{x \to \: 1} \frac{(2x - 3)( \sqrt{x}  - 1)}{(3x + 6)( \sqrt{x}  + 1)} }  \\  \\  \sf  \color{gold}{ \to \: subsitute \: x \: as \: 1} \\  \\  :  \implies \frac{2 \times 1 - 3}{(3 \times 1 + 6)(1  + 1)}   \\  \\ \sf{ :  \implies \:  \color{blue}\frac{ - 1}{18}  }

Similar questions