Math, asked by AkashMello, 3 months ago

Evaluate the following :

sin 30°+ tan 45°- cosec 60°/ cot 45° + cos 60° - sec 30°



No Spam ❌​


mangalanag414: hlo annayya
mangalanag414: Ela unnav

Answers

Answered by Anonymous
46

\huge{\textsf{\textbf{\color{indigo}{Question:-}}}}

 \huge\frac{sin30°+tan45°-cosec60°}{cot45°+cos60°-sec30°}

 \\  \\

\huge{\textsf{\textbf{\color{indigo}{Answer:-}}}}

 \huge\frac{ \frac{1}{2}  + 1 -  \frac{ 2}{ \sqrt{3} }  }{1 +  \frac{1}{2}  -  \frac{2}{ \sqrt{3} }  }

 =  =  > \huge\frac{ \frac{3}{2}  -  \frac{2}{ \sqrt{3} } }{\frac{3}{2}   - \frac{ 2}{ \sqrt{3} } }

Rationalise  \:  \Large \frac{ \frac{3}{2}  -  \frac{2}{ \sqrt{3} } }{ \frac{3}{2} -  \frac{2}{ \sqrt{3} }  }  \\  =  =  >\Large  \frac{ \frac{3}{2}  -  \frac{2}{ \sqrt{3} } }{ \frac{3}{2}  -  \frac{2}{ \sqrt{3} } }  \times  \frac{ \frac{3}{2}  +  \frac{2}{ \sqrt{3} } }{ \frac{3}{2} +  \frac{2}{ \sqrt{3} }  }  \\  =  =  >   \Large \frac{ (\frac{3}{2} )² - ( \frac{2}{ \sqrt{3} })² }{( \frac{3}{2}) ² -  (\frac{2}{ \sqrt{3} }) ²}  \\  =  =   >\Large  \frac{ \frac{9}{4}  -  \frac{4}{3} }{ \frac{9}{4}  -  \frac{4}{3} }  \\ \Large LCM \: of \: 3 \: and \: 4 \: is \: 12. \\  =  =  > \Large \frac{9}{4}  \times  \frac{3}{3}  =  \frac{27}{12}  \\  =  =  >  \Large\frac{4}{3}  \times  \frac{4}{4}  =  \frac{16}{12}  \\  =  =  > \Large \frac{ \frac{27}{12}  -  \frac{16}{12} }{ \frac{27}{12} -  \frac{16}{12}  }  \\  =  =  >  \Large\frac{ \frac{11}{12} }{ \frac{11}{12} }  \\  =  =  >  \cancel\frac{11}{12}  \times  \cancel\frac{12}{11}  \\   =  =  > \huge1

 \\

\Large{\textsf{\textbf{\color{yellow}{Helps\:uh\:for\:sure\:!!}}}}

(✿^‿^)

Answered by Sarikasree
2

hehehe theliyadhu ra

sorry

Similar questions