Math, asked by kshariharan, 3 months ago

evaluate the following \int\limits^1_0 {\frac{sin(3 tan^-1 x)tan^-1 x}{1+x^2} } \, dx


if you give silly answer I will report you

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \limits^{1}_{0} \frac{ \sin(3 \tan^{ - 1} (x) ) \tan^{ - 1} (x)  }{1 +  {x}^{2} } dx \\

let \:  \:  \tan^{ - 1} (x)  = t \\  \implies \frac{dx}{1 +  {x}^{2} } = dt

 \int \limits^{ \frac{\pi}{4} } _{0} { \sin(3t). t}dt \\

Firstly, solving the integral by integration by parts and then useing the limits, we have,

 [(\int  \sin(3t) dt)\times t]^{ \frac{\pi}{4} }_{0} - \int \limits^{ \frac{\pi}{4} } _{0}( \frac{d}{dt}(t) (\int( \sin(3t) )dt)dt )\\

 \implies [ \frac{ \cos(3t)}{3}  \times t]^{ \frac{\pi}{4} }_{0}  -  \int \limits^{ \frac{\pi}{4} } _{0}1 \times  -  \frac{ \cos(3t) }{3} dt \\

 \implies( \frac{1}{3}  \cos( \frac{3\pi}{4} ) \times  \frac{\pi}{4}   - 0) +  \frac{1}{3}  \int \limits^{ \frac{\pi}{4} } _{0} \cos(3t) dt \\

 \implies  - \frac{\pi}{12 \sqrt{2} }  +  \frac{1}{3} [ \frac{ \sin(3t) }{3} ]^{ \frac{\pi}{4} } _{0} \\

 \implies -  \frac{\pi}{12 \sqrt{2} }  +  \frac{1}{9} ( \sin( \frac{3\pi}{4} )  - 0)

 \implies -  \frac{\pi}{12 \sqrt{2} }  +  \frac{1}{9 \sqrt{2} }   \\

Similar questions
Math, 1 month ago