Math, asked by swanhayden7, 5 hours ago

Evaluate the following

 lim_{x \:  \to \: 0}( \frac{(x + y)sin(x + y) - ysiny}{x} )

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{(x + y)sin(x + y) - ysiny}{x}

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{ysiny - ysiny}{0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

Consider, again

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{(x + y)sin(x + y) - ysiny}{x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{xsin(x + y) + ysin(x + y) - ysiny}{x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{xsin(x + y) }{x} + \displaystyle\lim_{x \to 0}\rm \dfrac{ysin(x + y) - ysiny}{x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm sin(x + y) + y\displaystyle\lim_{x \to 0}\rm \dfrac{sin(x + y) - siny}{x}

\rm \:  =  \: siny + y\displaystyle\lim_{x \to 0}\rm \dfrac{2sin\bigg[\dfrac{x + y - y}{2} \bigg]cos\bigg[\dfrac{x + y + y}{2} \bigg]}{x}

\rm \:  =  \: siny + y\displaystyle\lim_{x \to 0}\rm \dfrac{2sin\bigg[\dfrac{x}{2} \bigg]cos\bigg[\dfrac{2y + x}{2} \bigg]}{x}

\rm \:  =  \: siny + y\displaystyle\lim_{x \to 0}\rm \dfrac{2sin\bigg[\dfrac{x}{2} \bigg]}{x}  \times \displaystyle\lim_{x \to 0}\rm cos\bigg[\dfrac{x + 2y}{2} \bigg]

\rm \:  =  \: siny + y\displaystyle\lim_{x \to 0}\rm \dfrac{2sin\bigg[\dfrac{x}{2} \bigg]}{\dfrac{x}{2}  \times 2}  \times cosy

\rm \:  =  \: siny + y\displaystyle\lim_{x \to 0}\rm \dfrac{sin\bigg[\dfrac{x}{2} \bigg]}{\dfrac{x}{2}}  \times cosy

We know,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}

So, using this, we get

\rm \:  =  \: siny + y \times 1 \times cosy

\rm \:  =  \: siny + y cosy

Hence,

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{(x + y)sin(x + y) - ysiny}{x} = siny + y \: cosy}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = 1 \: }}

Similar questions