Math, asked by karansinghsaggu, 8 days ago

Evaluate the following :-

 \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } }

Answers

Answered by mathdude500
53

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } }  \\

Let assume that

\rm \:  x = \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } }  \\

As,

\rm \:  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } } > 0  \\

So,

\rm\implies \:x > 0 \\

Now,

\rm \:  x = \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } }  \\

On squaring both sides, we get

\rm \:   {x}^{2}  =12 +  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } }  \\

\rm \:   {x}^{2}  =12 +  x  \\

\rm \:   {x}^{2}  - x - 12 = 0  \\

Now, its a quadratic equation in x, so using splitting of middle terms, we get

\rm \:   {x}^{2}  - 4x + 3x - 12 = 0  \\

\rm \: x(x - 4) + 3(x - 4) = 0 \\

\rm \: (x - 4)(x  + 3) = 0 \\

\rm\implies \:x = 4 \:  \: or \:  \: x =  - 3 \:   \red{\{rejected \: as \: x > 0 \}} \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  -  -  -  \infty } } }  = 4  \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Answered by StarFighter
49

Answer:

Question :-

★ Evaluate the following :-

\mapsto \sf \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}}\\

Given :-

\mapsto \sf \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}}\\

To Find :-

\mapsto Evaluate.

Solution :-

Let,

\dashrightarrow \bf \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}} =\: x\\

So,

\implies \sf \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}} =\: x\\

By squaring both sides we get :

\implies \sf 12 + \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}} =\: x^2\\

\implies \sf 12 + x =\: x^2

\implies \sf x + 12 =\: x^2

\implies \sf - x^2 + x + 12 =\: 0

\implies \sf - (x^2 - x - 12) =\: 0

\implies \sf x^2 - x - 12 =\: 0

By doing middle term break we get :

\implies \sf x^2 - (4 - 3)x - 12 =\: 0

\implies \sf x^2 - 4x + 3x - 12 =\: 0\: \: \small\bigg\lgroup \sf\bold{\pink{By\: doing\: middle-term\: break}}\bigg\rgroup\\

\implies \sf x(x - 4) + 3(x - 4) =\: 0

\implies \sf (x - 4)(x + 3) =\: 0

\implies \bf (x - 4) =\: 0

\implies \sf x - 4 =\: 0

\implies \sf\bold{\purple{x =\: 4}}\\

Or,

\implies \bf (x + 3) =\: 0

\implies \sf x + 3 =\: 0

\implies \sf\bold{\purple{x =\: - 3}}\: \: \small\bigg\lgroup \sf\bold{\pink{Number\: can't\:  be\: negetive}}\bigg\rgroup\\

So, the value of x = 4.

Hence,

\dashrightarrow \sf \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}} =\: x

\dashrightarrow \sf\bold{\red{\sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}} =\: 4}}\\

\sf\boxed{\bold{\therefore\: \sqrt{12 + \sqrt{12 + \sqrt{12 + - - - \infty}}} =\: 4\: .}}\\

Similar questions