Math, asked by devansh9257, 1 day ago

Evaluate the following using properties of integration

\int_{-100}^{100} \: log( \sqrt{ {x}^{2}  + 1} + x) \: dx \\

Answers

Answered by senboni123456
28

Answer:

Step-by-step explanation:

We have,

\tt{\displaystyle\,I=\int^{100}_{-100}\log\left(\sqrt{{x}^{2}+1}+x\right)\,dx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(1)}

We know,

\boxed{\bf{\displaystyle\int^{b}_{a}f(x)\,dx=\int^{b}_{a}f(a+b-x)\,dx}}

So,

\tt{\displaystyle\implies\,I=\int^{100}_{-100}\log\left(\sqrt{\left(100-100-x\right)^{2}+1}+\left(100-100-x\right)\right)\,dx}

\tt{\displaystyle\implies\,I=\int^{100}_{-100}\log\left(\sqrt{{x}^{2}+1}-x\right)\,dx}

\tt{\displaystyle\implies\,I=\int^{100}_{-100}\log\left\{\dfrac{\left(\sqrt{{x}^{2}+1}-x\right)\left(\sqrt{{x}^{2}+1}+x\right)}{\sqrt{{x}^{2}+1}+x}\right\}\,dx}

\tt{\displaystyle\implies\,I=\int^{100}_{-100}\log\left(\dfrac{{x}^{2}+1-{x}^{2}}{\sqrt{{x}^{2}+1}+x}\right)\,dx}

\tt{\displaystyle\implies\,I=\int^{100}_{-100}\log\left(\dfrac{1}{\sqrt{{x}^{2}+1}+x}\right)\,dx}

\tt{\displaystyle\implies\,I=-\int^{100}_{-100}\log\left(\sqrt{{x}^{2}+1}+x\right)\,dx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2)}

Adding (1) and (2),

\tt{\displaystyle\implies\,2I=\int^{100}_{-100}\log\left(\sqrt{{x}^{2}+1}+x\right)\,dx-\int^{100}_{-100}\log\left(\sqrt{{x}^{2}+1}+x\right)\,dx}

\tt{\displaystyle\implies\,2I=0}

\tt{\displaystyle\implies\,I=0}

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Given integral is

\rm \:  \displaystyle\int_{-100}^{100} \: log( \sqrt{ {x}^{2} + 1} + x) \: dx \\

We know,

\boxed{ \rm{ \:\begin{gathered}\begin{gathered}\bf\: \displaystyle\int_{-a}^{a}f(x)dx  = \:\begin{cases} &\sf{0, \:  \: if \: f( - x) =  - f(x)} \\  \\ &\sf{2\displaystyle\int_{0}^{a}f(x)dx, \:  \: if \: f( - x) = f(x)} \end{cases}\end{gathered}\end{gathered}}}

Now, Let assume that

\rm \: f(x) = log( \sqrt{ {x}^{2} + 1} + x) \\

So,

\rm \: f( - x) = log( \sqrt{ {x}^{2} + 1}  -  x) \\

\rm \:= log\bigg( \sqrt{ {x}^{2} + 1}  -  x \times \dfrac{ \sqrt{ {x}^{2}  + 1}  + x}{ \sqrt{ {x}^{2} + 1 }  + x} \bigg) \\

\rm \:= log\bigg(\dfrac{ (\sqrt{ {x}^{2}  + 1} )^{2} -  {x}^{2} }{ \sqrt{ {x}^{2} + 1 }  + x} \bigg) \\

\rm \:= log\bigg(\dfrac{  {x}^{2} + 1  -  {x}^{2} }{ \sqrt{ {x}^{2} + 1 }  + x} \bigg) \\

\rm \:= log\bigg(\dfrac{1}{ \sqrt{ {x}^{2} + 1 }  + x} \bigg) \\

\rm \:= log( \sqrt{ {x}^{2} + 1 }  + x)^{ - 1}  \\

\rm \:=   \: -  \: log( \sqrt{ {x}^{2} + 1 }  + x)  \\

\rm \:=   \: -  \: f(x) \\

So, we get

\rm\implies \:\rm \:f(-x) \: =   \: -  \: f(x) \\

Hence, Using the property, we get

\rm\implies \:\displaystyle\int_{-100}^{100} \:log( \sqrt{ {x}^{2} + 1} + x)dx \:  =  \: 0 \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}f(x)dx \:  =  \: \displaystyle\int_{a}^{b}f(y)dy \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}f(x)dx \:  =  \:  -  \: \displaystyle\int_{b}^{a}f(x)dx \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{a}^{b}f(x)dx \:  =  \:  \displaystyle\int_{a}^{b}f(a + b - x)dx  \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{a}f(x)dx \:  =  \:  \displaystyle\int_{0}^{a}f(a - x)dx  \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}f(x)dx \:  =  \: 2 \displaystyle\int_{0}^{a}f(x)dx  \:  \rm \: if \: f(2a - x) = f(x) }} \\

\boxed{ \rm{ \:\displaystyle\int_{0}^{2a}f(x)dx \:  =  \: 0  \:  \rm \: if \: f(2a - x) \:  = \:  -  f(x) }} \\

Similar questions