Evaluate the following using suitable identities: (i) (99)^3 (ii) (102)^3
Answers
Answered by
232
Answer:
1)970299
2)1061208
Explanation:
To solve this we must know:-
So,
(i) (99)³ = (100 - 1)³
= (100)³ - (1)³ - 3(100) (1) (100 - 1)
= 1000000 - 1 - 300(99)
= 1000000 - 1 - 29700
= 970299
(ii) (102)³ = (100 + 2)³
= (100)³ + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 600 (102)
= 1000000 + 8 + 61200
= 1061208
Answered by
2
Step-by-step explanation:
99^3 = (100-1)^3
using identity (a-b)^3= a^3-b^3-3ab(a-b)
(100-1)^3= 100^3-1^3-3*100*1*(100-1)
=1000000-1-300*99
=1000000-1-29700
1000000-29701
=970299.
similarly, we can solve 100^3 by using the identity
(a+b)^3=a^3+b^3+3ab(a+b)
Similar questions