Math, asked by guptaananya2005, 1 month ago

EVALUATE THE FOLLOWING

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ BEST USERS

Integrate the following function with respect to x

 \frac{1}{x( {x}^{5} - 1)}

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\red{\rm :\longmapsto\:\displaystyle\int\sf \dfrac{1}{x( {x}^{5}  - 1)} \: dx}

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{x\bigg[ {x}^{5} -  \dfrac{ {x}^{5} }{ {x}^{5} } \bigg]} \: dx

can be further rewritten after taking common from denominator as

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{x \times  {x}^{5} \bigg[ 1 -  \dfrac{ 1}{ {x}^{5} } \bigg]} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{1}{{x}^{6} \bigg[ 1 -  \dfrac{ 1}{ {x}^{5} } \bigg]} \: dx

\rm \:  =  \: \displaystyle\int\rm  \frac{ {x}^{ - 6} }{ 1 -  \dfrac{ 1}{ {x}^{5} } } \: dx

Now, we use method of Substitution to evaluate such integral.

So, Substitute

\red{\rm :\longmapsto\:1 - \dfrac{1}{ {x}^{5} }  = y}

\red{\rm :\longmapsto\:1 -  {x}^{ - 5}   = y}

\red{\rm :\longmapsto\: 5 {x}^{ - 5 - 1} \: dx   = dy}

\red{\rm :\longmapsto\: 5 {x}^{ - 6} \: dx   = dy}

\red{\rm :\longmapsto\: {x}^{ - 6} \: dx   = \dfrac{dy}{ 5} }

So, above integral can be rewritten as

\rm \:  =  \:\displaystyle\int\rm \dfrac{dy}{ 5y}

\rm \:  = \: \:  \dfrac{1}{5}   \:\displaystyle\int\rm \dfrac{dy}{y}

\rm \:  = \: \:  \dfrac{1}{5}  log |y|  + c

\rm \:  = \: \:  \dfrac{1}{5}  log \bigg|1 - \dfrac{1}{ {x}^{5} }  \bigg|  + c

\rm \:  = \: \:  \dfrac{1}{5}  log \bigg| \dfrac{ {x}^{5} -  1}{ {x}^{5} }  \bigg|  + c

Hence,

\boxed{ \tt{ \: \displaystyle\int\rm \:  \frac{1}{x( {x}^{5}  - 1)} \: dx \:  =  \:  \dfrac{1}{5}  log \bigg| \dfrac{ {x}^{5} - 1}{ {x}^{5}}  \bigg|  + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions