Math, asked by prdeep4470, 1 year ago

Evaluate the function w.r.t.x \int [ e^{(2-5x)}+ \frac{2}{6x+1}]\ dx

Answers

Answered by sriharipraneetha4
0

evaluation of the function w.r.t.x is very easy,it goes like this.

∫ [ e^{(2-5x)}+ \frac{2}{6x+1}]\ dx

Answered by jitumahi89
0

Answer:

\frac{e^{2x-5} }{2} + \frac{log(6x+1)}{3}

Step-by-step explanation:

Since we know that \int\ {e^{x} } \, dx = e^{x}.....................(1)

\int\ {\frac{1}{x} } \, dx =logx..............................(2)

we need to evaluate

\int [ e^{(2-5x)}+ \frac{2}{6x+1}]\ dx = \int [ e^{(2-5x)}+ \frac{2}{6x+1}]\ dx = \int\ {e^{2-5x} } \, dx +\int\ {\frac{2}{6x+1}} \, dx

So, using (1) and (2) we get ,

                         = \frac{e^{2x-5} }{2} + 2\frac{log(6x+1)}{6}

                         = \frac{e^{2x-5} }{2} + \frac{log(6x+1)}{3}

Similar questions