Math, asked by StarTbia, 1 year ago

Evaluate the given expression:

Attachments:

Answers

Answered by ujalasingh385
0

Answer:-

\mathbf{1\ -\ \frac{\pi}{4}}

Step-by-step explanation:

In this question,

We have to calculate

\int\limits^\frac{\pi}{4}_0 {tan^{2}x} \, dx

Therefore we know that,

\mathbf{1\ +\ tan^{2}x\ =\ Sec^{2}x}

tan^{2}x\ =\ Sec^{2}x\ -\ 1

Putting the value in integral we get,

\int\limits^\frac{\pi}{4}_0 ({Sec^{2}x\ -\ 1}) \, dx

Solving the integral we get,

\int\limits^\frac{\pi}{4}_0 {Sec^{2}x}\ dx -\ \int\limits^\frac{\pi}{4}_0 {1}\ dx

\int\limits^\frac{\pi}{4}_0 {Sec^{2}x}\ dx\ =\ tanx

Again Solving for upper and lower limits

_{x=0}^{x=\frac{\pi}{4}}|tanx|\ -\ _{x=0}^{x=\frac{\pi}{4}}|x|

On solving we get,

\mathbf{1\ -\ \frac{\pi}{4}}

Answered by pulakmath007
6

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

\displaystyle  \sf{\int\limits_{0}^{ \frac{\pi}{4} }  { \tan}^{2}x  \, dx }

CALCULATION

\displaystyle  \sf{\int\limits_{0}^{ \frac{\pi}{4} }  { \tan}^{2}x  \, dx }

 = \displaystyle  \sf{\int\limits_{0}^{ \frac{\pi}{4} } ( { \sec}^{2}x - 1)  \, dx }

 = \displaystyle  \sf{\int\limits_{0}^{ \frac{\pi}{4} } { \sec}^{2}x   \, dx  -  \:\int\limits_{0}^{ \frac{\pi}{4} }  \, dx   \: }

 =  \displaystyle \sf{ \bigg [\: \tan x  \: \bigg ]_0^{ \frac{\pi}{4} } \:  - { \bigg [\: x \: \bigg ]_0^{ \frac{\pi}{4} }} \: }

 =  \displaystyle \sf{ ( \: \tan \frac{\pi}{4}  -  \tan \: 0) - ( \:  \frac{\pi}{4}   - 0 \: )\: }

 =  \displaystyle \sf{ 1 - 0 -  \frac{\pi}{4}  + 0\:}

 =  \displaystyle \sf{ 1 -   \frac{\pi}{4}  \:}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Similar questions