Math, asked by kk1000, 1 month ago

Evaluate the limit. ​

Attachments:

Answers

Answered by mathdude500
5

Given Question :-

Evaluate the following limit :

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{log(1 + sin4x)}{ {e}^{sin5x}  - 1}

 \red{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{log(1 + sin4x)}{ {e}^{sin5x}  - 1}

If we put directly x = 0, we get

\rm \:  =  \:\dfrac{log(1 + sin0)}{ {e}^{sin0}  - 1}

\rm \:  =  \:\dfrac{log(1 +0)}{ {e}^{0}  - 1}

\rm \:  =  \:\dfrac{log(1)}{1  - 1}

\rm \:  =  \:\dfrac{0}{0}

which is indeterminant form

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{log(1 + sin4x)}{ {e}^{sin5x}  - 1}

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{x \to 0} \frac{log(1 + sin4x)}{sin4x} \times  \frac{sin5x}{ {e}^{sin5x}  - 1} \times  \frac{sin4x}{sin5x}

can be further rewritten as

\rm=\displaystyle\lim_{x \to 0} \frac{log(1 + sin4x)}{sin4x} \times \displaystyle\lim_{x \to 0} \frac{sin5x}{ {e}^{sin5x}  - 1} \times \displaystyle\lim_{x \to 0} \frac{sin4x}{sin5x}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \: }}

and

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1 \: }}

So, using these Identities, we get

\rm \:  =  \:1 \times 1 \times \displaystyle\lim_{x \to 0} \frac{sin4x}{sin5x}

\rm \:  =  \: \displaystyle\lim_{x \to 0} \frac{sin4x}{sin5x}

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{x \to 0} \frac{sin4x}{4x} \times  \frac{5x}{sin5x}  \times  \frac{4x}{5x}

\rm \:  =  \:\displaystyle\lim_{x \to 0} \frac{sin4x}{4x} \times \displaystyle\lim_{x \to 0} \frac{5x}{sin5x}  \times  \frac{4}{5}

We know,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x}  = 1 \: }}

So, using this identity, we get

\rm \:  =  \:1 \times  1\times \dfrac{4}{5}

\rm \:  =  \: \dfrac{4}{5}

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + sin4x)}{ {e}^{sin5x}  - 1} =  \frac{4}{5} \: }}}

More to know :-

\boxed{ \tt{ \: sinx = x -  \frac{ {x}^{3} }{3!} +  \frac{ {x}^{5} }{5!} +  -  -  - }}

\boxed{ \tt{ \: cosx = 1 -  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{4} }{4!} +  -  -  - }}

\boxed{ \tt{ \:  {e}^{x} = 1 + x +  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{3} }{3!} +  -  -  - }}

\boxed{ \tt{ \:  {e}^{ - x} = 1  -  x +  \frac{ {x}^{2} }{2!}  - \frac{ {x}^{3} }{3!} +  -  -  - }}

Similar questions