Math, asked by Anonymous, 1 month ago

Evaluate the limit:
\lim_{n \to 16} \frac{\sqrt{x} -4}{x-16}

Answers

Answered by mathdude500
13

Appropriate Question

Evaluate the limit

\rm :\longmapsto\:\displaystyle\lim_{x \to 16} \frac{ \sqrt{x} - 4 }{x - 16}

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 16} \frac{ \sqrt{x} - 4 }{x - 16}

If we substitute directly x = 16, we get

\rm \:  =  \:  \dfrac{ \sqrt{16} - 4 }{16 - 16}

\rm \:  =  \:  \dfrac{ 4 - 4 }{0}

\rm \:  =  \:  \dfrac{0}{0}

which is indeterminant form,

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 16} \frac{ \sqrt{x} - 4 }{x - 16}

To evaluate this limit, we use Method of Substitution

So, we substitute

\red{\rm :\longmapsto\:x =  {y}^{2}, \: as \: x \:  \to \: 16 \:  \: y \:  \to \: 4}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 4} \frac{y - 4}{ {y}^{2}  - 16}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 4} \frac{y - 4}{ {y}^{2}  -  {4}^{2} }

\rm \:  =  \: \displaystyle\lim_{y \to 4} \frac{y - 4}{ (y - 4)(y + 4) }

\rm \:  =  \: \displaystyle\lim_{y \to 4} \frac{1}{y + 4}

\rm \:  =  \: \dfrac{1}{4 + 4}

\rm \:  =  \: \dfrac{1}{8}

Hence,

\rm \implies\:\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 16} \frac{ \sqrt{x} - 4 }{x - 16} =  \frac{1}{8} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions