Math, asked by kk1000, 5 days ago

Evaluate the Limit x -[x] / x-2 when x tends to 2 negative .​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Evaluate the following limit :-

\rm :\longmapsto\:\displaystyle\lim_{x \to 2^ - } \frac{x - [x]}{x - 2}

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 2^ - } \frac{x - [x]}{x - 2}

To evaluate this limit, we use method of Substitution.

So, we substitute

 \red{\rm :\longmapsto\:x = 2 - h \:  \: as \: x \to \: 2 \:  \: so \: h \to \: 0 \: }

So, above expression reduced to

\rm \:  =  \:\displaystyle\lim_{h \to \: 0} \frac{2 - h - [2 - h]}{2 - h - 2}

\rm \:  =  \:\displaystyle\lim_{h \to \: 0} \frac{2 - h - [2 - h]}{ - h}

We know, by definition of Greatest Integer function,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: 1 \leqslant x < 2 \: \rm \implies\:[x] = 1 \: }}}

So, we get

\rm \:  =  \:\displaystyle\lim_{h \to \: 0} \frac{2 - h - 1}{ - h}

\rm \:  =  \:\displaystyle\lim_{h \to \: 0} \frac{1 - h}{ - h}

\rm \:  =  \:\dfrac{1 - 0}{ - 0}

\rm \:  =  \: -  \:  \infty

Hence,

 \purple{\bf\implies \:\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 2^ - } \frac{x - [x]}{x - 2}  =  -  \:  \infty  \: }}}

More to know :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions