Math, asked by kk1000, 1 month ago

Evaluate the limit ( [x²] - [x] ) / (x² - 1) when x tends to 1 positive .
Handwritten question is in attachment . ​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{ \lim_{x \to1^{ + }  }   \frac{ [ {x}^{2} ] -  [x]^{2}  }{ {x}^{2}  - 1} }\\

 \sf{ =  \lim_{h \to0  }   \frac{ [ {(1 + h)}^{2} ] -  [1 + h]^{2}  }{ {(1 + h)}^{2}  - 1} }\\

 \sf{ =  \lim_{h \to0  }   \frac{ [ 1 + h ^{2} + 2h  ] -  (1)^{2}  }{ 1 + h^{2} + 2h   - 1} }\\

 \sf{ =  \lim_{h \to0  }   \frac{ 1 -  (1)^{2}  }{ h^{2} + 2h  } }\\

 =  \sf{0}

Similar questions