evaluate the question given in attachment
Answers
Given :-
To find :-
Formula Implemented
( a + b )² = a² + b² + 2ab
Lets do!
For given equation We have to do Squaring on both sides
Applying (a + b )² = a² + b² + 2ab formula
Tranpose 2 to RHS
This is the required answer
Know more Some algebraic identities :-
a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
Answer:
Given :-
x + \frac{1}{x} = 4x+
x
1
=4
To find :-
x {}^{2} + \frac{1}{x {}^{2} } =x
2
+
x
2
1
=
Formula Implemented
( a + b )² = a² + b² + 2ab
Lets do!
For given equation We have to do Squaring on both sides
Applying (a + b )² = a² + b² + 2ab formula
(x + \frac{1}{x} ) {}^{2} = x {}^{2} + \frac{1 {}^{2} }{x {}^{2} } + 2 \times x \times \frac{1}{x}(x+
x
1
)
2
=x
2
+
x
2
1
2
+2×x×
x
1
(4) {}^{2} = x {}^{2} + \frac{1}{x {}^{2} } + 2(4)
2
=x
2
+
x
2
1
+2
Tranpose 2 to RHS
x {}^{2} + \frac{1}{x {}^{2} } = 16-2x
2
+
x
2
1
=16−2
x {}^{2} + \frac{1}{x {}^{2} } = 14x
2
+
x
2
1
=14
This is the required answer
Know more Some algebraic identities :-
a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc