Math, asked by papafairy143, 1 day ago

Evaluate the sum of n terms

 \frac{1}{1.2.3.4}  + \frac{1}{2.3.4.5} +  -  -  -  +  \frac{1}{n(n + 1)(n + 2)(n + 3)}

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given series is

\rm \: \dfrac{1}{1.2.3.4} + \dfrac{1}{2.3.4.5} + - - - + \dfrac{1}{n(n + 1)(n + 2)(n + 3)} \\

Let assume that r^{th} term of the series be

\rm \:T_{r} =  \dfrac{1}{r(r + 1)(r + 2)(r + 3)} \\

Now,

\rm \:T_{r + 1} =  \dfrac{1}{(r + 1)(r + 2)(r + 3)(r + 4)} \\

can be rewritten as

\rm \:T_{r + 1} =  \dfrac{r}{r(r + 1)(r + 2)(r + 3)(r + 4)} \\

\rm \:T_{r + 1} =  \dfrac{rT_{r}}{r + 4} \\

\rm \: (r + 4)T_{r + 1} = rT_{r} \\

\rm \: (r + 1 + 3)T_{r + 1} = rT_{r} \\

\rm \: (r + 1)T_{r + 1}  + T_{r + 1}= rT_{r} \\

\rm \: rT_{r} - (r + 1)T_{r + 1} = 3T_{r + 1} \\

On substituting r = 1, 2, 3, ..., n

\rm \: T_{1} - 2T_{2} = 3T_{2} \\

\rm \: 2T_{2} - 3T_{3} = 3T_{3} \\

\rm \: 3T_{3} - 3T_{4} = 3T_{4} \\

.

.

.

.

\rm \: nT_{n} - (n + 1)T_{n + 1} = 3T_{n + 1} \\

On adding above all equations, we get

\rm \: T_{1} - nT_{n} = 3(T_2 + T_3 + T_4 +  -  -  -  + T_n) \\

can be further rewritten as

\rm \:3T_1 +  T_{1} - nT_{n} = 3(T_1 + T_2 + T_3 + T_4 +  -  -  -  + T_n) \\

\rm \:4T_1 - nT_{n} = 3(T_1 + T_2 + T_3 + T_4 +  -  -  -  + T_n) \\

\rm \:3(T_1 + T_2 + T_3 +  -  -   + T_n)= 4 \times \dfrac{1}{1.2.3.4} - \dfrac{1}{n(n + 1)(n + 2)(n + 3)}   \\

\rm \:3(T_1 + T_2 + T_3 +  -  -   + T_n)= \dfrac{1}{6} - \dfrac{1}{n(n + 1)(n + 2)(n + 3)}   \\

\rm \:T_1 + T_2 + T_3 +  -  -   + T_n= \dfrac{1}{18} - \dfrac{1}{3n(n + 1)(n + 2)(n + 3)}   \\

Hence,

\rm\implies \:S_n= \dfrac{1}{18} - \dfrac{1}{3n(n + 1)(n + 2)(n + 3)}   \\


amansharma264: Good
mathdude500: Thank you so much
Similar questions